Analysis of Features in Big Data Projects: A Systematic Literature Review

Descripción del Articulo

In the implementation of big data projects, several problems are identified that may be due to different factors, such as the low quality of the data used with anomalies that may affect the accuracy of the results or the lack of clarity in the business objectives. This situation can lead to errors i...

Descripción completa

Detalles Bibliográficos
Autores: Ojeda, Mariel Liliana, Vegega, Cinthia, Pollo Cattaneo, María F.
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/7457
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7457
Nivel de acceso:acceso abierto
Materia:methodology
big data technology
enterprise data management
metodología
tecnología big data
gestión de datos empresariales
id REVULIMA_70135bab62ac8baf257ed53f7fa7cf27
oai_identifier_str oai:revistas.ulima.edu.pe:article/7457
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
spelling Analysis of Features in Big Data Projects: A Systematic Literature ReviewAnálisis de características en proyectos de big data: revisión sistemática de literaturaOjeda, Mariel LilianaVegega, CinthiaPollo Cattaneo, María F.methodologybig data technologyenterprise data managementmetodologíatecnología big datagestión de datos empresarialesIn the implementation of big data projects, several problems are identified that may be due to different factors, such as the low quality of the data used with anomalies that may affect the accuracy of the results or the lack of clarity in the business objectives. This situation can lead to errors in the decision making process, delays in deliveries and even the cancellation of the project. In this context, the present work arises from the need to compile previous research in order to know the importance of the application of a working methodology in big data projects. The objective is to identify the approaches of the most used methodologies and to analyze the characteristics of each one, as well as the common or transversal characteristics that allow the combination, or adaptation, of different methodologies in the same project. The generation of large volumes of data from different sources and formats ncreases the challenge of verifying quality, as they may present anomalies that affect the accuracy of the results obtained.En el desarrollo de proyectos de big data se identifican diversas problemáticas que pueden deberse a distintos factores, como la baja calidad de los datos utilizados con anomalías que pueden afectar la precisión de los resultados o la falta de claridad en los objetivos comerciales. Esta situación puede provocar errores en el proceso de toma de decisiones, retrasos en las entregas y hasta la cancelación del proyecto. En este contexto, el presente trabajo surge de la necesidad de recopilar investigaciones previas con el fin de conocer la importancia de la aplicación de una metodología de trabajo en proyectos de big data. Se realiza con el objetivo de identificar los enfoques de las metodologías más utilizadas y analizar las características propias de cada una, así como las características comunes o transversales, que permiten la combinación, o adaptación, de distintas metodologías en un mismo proyecto. La generación de grandes volúmenes de datos provenientes de diferentes fuentes y formatos aumenta el desafío de verificar la calidad, ya que pueden presentar anomalías que afecten así la precisión de los resultados obtenidos.Universidad de Lima2024-12-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/745710.26439/interfases2024.n020.7457Interfases; No. 020 (2024); 211-229Interfases; Núm. 020 (2024); 211-229Interfases; n. 020 (2024); 211-2291993-491210.26439/interfases2024.n020reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/7457/7475https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7457/7476https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.ulima.edu.pe:article/74572025-05-02T13:23:41Z
dc.title.none.fl_str_mv Analysis of Features in Big Data Projects: A Systematic Literature Review
Análisis de características en proyectos de big data: revisión sistemática de literatura
title Analysis of Features in Big Data Projects: A Systematic Literature Review
spellingShingle Analysis of Features in Big Data Projects: A Systematic Literature Review
Ojeda, Mariel Liliana
methodology
big data technology
enterprise data management
metodología
tecnología big data
gestión de datos empresariales
title_short Analysis of Features in Big Data Projects: A Systematic Literature Review
title_full Analysis of Features in Big Data Projects: A Systematic Literature Review
title_fullStr Analysis of Features in Big Data Projects: A Systematic Literature Review
title_full_unstemmed Analysis of Features in Big Data Projects: A Systematic Literature Review
title_sort Analysis of Features in Big Data Projects: A Systematic Literature Review
dc.creator.none.fl_str_mv Ojeda, Mariel Liliana
Vegega, Cinthia
Pollo Cattaneo, María F.
author Ojeda, Mariel Liliana
author_facet Ojeda, Mariel Liliana
Vegega, Cinthia
Pollo Cattaneo, María F.
author_role author
author2 Vegega, Cinthia
Pollo Cattaneo, María F.
author2_role author
author
dc.subject.none.fl_str_mv methodology
big data technology
enterprise data management
metodología
tecnología big data
gestión de datos empresariales
topic methodology
big data technology
enterprise data management
metodología
tecnología big data
gestión de datos empresariales
description In the implementation of big data projects, several problems are identified that may be due to different factors, such as the low quality of the data used with anomalies that may affect the accuracy of the results or the lack of clarity in the business objectives. This situation can lead to errors in the decision making process, delays in deliveries and even the cancellation of the project. In this context, the present work arises from the need to compile previous research in order to know the importance of the application of a working methodology in big data projects. The objective is to identify the approaches of the most used methodologies and to analyze the characteristics of each one, as well as the common or transversal characteristics that allow the combination, or adaptation, of different methodologies in the same project. The generation of large volumes of data from different sources and formats ncreases the challenge of verifying quality, as they may present anomalies that affect the accuracy of the results obtained.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-26
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7457
10.26439/interfases2024.n020.7457
url https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7457
identifier_str_mv 10.26439/interfases2024.n020.7457
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7457/7475
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7457/7476
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Interfases; No. 020 (2024); 211-229
Interfases; Núm. 020 (2024); 211-229
Interfases; n. 020 (2024); 211-229
1993-4912
10.26439/interfases2024.n020
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1841719317634220032
score 12.860752
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).