Analysis of Features in Big Data Projects: A Systematic Literature Review

Descripción del Articulo

In the implementation of big data projects, several problems are identified that may be due to different factors, such as the low quality of the data used with anomalies that may affect the accuracy of the results or the lack of clarity in the business objectives. This situation can lead to errors i...

Descripción completa

Detalles Bibliográficos
Autores: Ojeda, Mariel Liliana, Vegega, Cinthia, Pollo Cattaneo, María F.
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/7457
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/7457
Nivel de acceso:acceso abierto
Materia:methodology
big data technology
enterprise data management
metodología
tecnología big data
gestión de datos empresariales
Descripción
Sumario:In the implementation of big data projects, several problems are identified that may be due to different factors, such as the low quality of the data used with anomalies that may affect the accuracy of the results or the lack of clarity in the business objectives. This situation can lead to errors in the decision making process, delays in deliveries and even the cancellation of the project. In this context, the present work arises from the need to compile previous research in order to know the importance of the application of a working methodology in big data projects. The objective is to identify the approaches of the most used methodologies and to analyze the characteristics of each one, as well as the common or transversal characteristics that allow the combination, or adaptation, of different methodologies in the same project. The generation of large volumes of data from different sources and formats ncreases the challenge of verifying quality, as they may present anomalies that affect the accuracy of the results obtained.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).