Exportación Completada — 

Flight plan optimization for multiple drones in construction sites

Descripción del Articulo

The construction sector is searching for new technologies, such as drones, that prove helpful for the surveillance and supervision of construction sites, especially in pandemic situations. This research proposes designing flight planning models to optimize flight time and speed. The main objective i...

Descripción completa

Detalles Bibliográficos
Autores: Sotelo Vila, Alvaro, Ramírez Cerna, Lourdes
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/6230
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230
Nivel de acceso:acceso abierto
Materia:dynamic programming
flight planner
surveillance drones
genetic alorithm
programación dinámica
planificador de vuelo
drones de vigilancia
algoritmo genético
Descripción
Sumario:The construction sector is searching for new technologies, such as drones, that prove helpful for the surveillance and supervision of construction sites, especially in pandemic situations. This research proposes designing flight planning models to optimize flight time and speed. The main objective is to develop a model that allows multiple drones to carry out supervision tasks in construction areas. In this regard, it presents a dynamic programming model and a metaheuristic based on genetic algorithms, both applied for optimizing flight plans with multiple drones. The development process involves planning the route that the drones will follow by formulating the problem with the corresponding parameters. The next step is to generate a model for the dynamic programming algorithm, which is then validated using a genetic algorithm. The proposals implemented in Python were tested in 14 scenarios, gradually increasing in complexity. The dynamic programming-based model significantly improves planning time in all scenarios, achieving an average difference of 281,34 seconds or 4 minutes and 47 seconds, 98,01 % better than the genetic algorithm. Additionally, there is a considerable improvement in segment speeds, as the results show. A paired test evaluated these advancements. The hypothesis is supported with a p-value of 0,0031 for time and 0,0071 for the gain obtained by the objective function in both cases. This confirms the superiority of the dynamic programming algorithm compared to the genetic algorithm.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).