Flight plan optimization for multiple drones in construction sites
Descripción del Articulo
The construction sector is searching for new technologies, such as drones, that prove helpful for the surveillance and supervision of construction sites, especially in pandemic situations. This research proposes designing flight planning models to optimize flight time and speed. The main objective i...
Autores: | , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad de Lima |
Repositorio: | Revistas - Universidad de Lima |
Lenguaje: | español |
OAI Identifier: | oai:revistas.ulima.edu.pe:article/6230 |
Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230 |
Nivel de acceso: | acceso abierto |
Materia: | dynamic programming flight planner surveillance drones genetic alorithm programación dinámica planificador de vuelo drones de vigilancia algoritmo genético |
id |
REVULIMA_5299de9d4e9fee0b7dda075430d3deaf |
---|---|
oai_identifier_str |
oai:revistas.ulima.edu.pe:article/6230 |
network_acronym_str |
REVULIMA |
network_name_str |
Revistas - Universidad de Lima |
repository_id_str |
|
spelling |
Flight plan optimization for multiple drones in construction sitesOptimización de planes de vuelo para múltiples drones en zonas de construcciónSotelo Vila, AlvaroRamírez Cerna, Lourdesdynamic programmingflight plannersurveillance dronesgenetic alorithmprogramación dinámicaplanificador de vuelodrones de vigilanciaalgoritmo genéticoThe construction sector is searching for new technologies, such as drones, that prove helpful for the surveillance and supervision of construction sites, especially in pandemic situations. This research proposes designing flight planning models to optimize flight time and speed. The main objective is to develop a model that allows multiple drones to carry out supervision tasks in construction areas. In this regard, it presents a dynamic programming model and a metaheuristic based on genetic algorithms, both applied for optimizing flight plans with multiple drones. The development process involves planning the route that the drones will follow by formulating the problem with the corresponding parameters. The next step is to generate a model for the dynamic programming algorithm, which is then validated using a genetic algorithm. The proposals implemented in Python were tested in 14 scenarios, gradually increasing in complexity. The dynamic programming-based model significantly improves planning time in all scenarios, achieving an average difference of 281,34 seconds or 4 minutes and 47 seconds, 98,01 % better than the genetic algorithm. Additionally, there is a considerable improvement in segment speeds, as the results show. A paired test evaluated these advancements. The hypothesis is supported with a p-value of 0,0031 for time and 0,0071 for the gain obtained by the objective function in both cases. This confirms the superiority of the dynamic programming algorithm compared to the genetic algorithm.El sector de la construcción ha encontrado en los drones una tecnología útil para la vigilancia y supervisión de obras, en especial desde la pandemia del COVID-19. Esta investigación propone el diseño de modelos de planificación de vuelo con el fin de optimizar su tiempo y velocidad. El objetivo es desarrollar un modelo que permita emplear múltiples drones para llevar a cabo tareas de supervisión en zonas de construcción. En este sentido, se presenta un modelo de programación dinámica y una metaheurística basada en algoritmo genético, ambos aplicados para la optimización de planes de vuelo con múltiples drones. Las propuestas implementadas en Python han sido probadas en 14 escenarios, incrementando gradualmente la complejidad. En todos ellos, el modelo basado en programación dinámica muestra mejoras significativas en el tiempo de planificación, obteniendo una diferencia promedio de 281,34 segundos o 4 minutos y 47 segundos, lo cual es un 98,01 % superior al algoritmo genético. Además, se observa una mejora considerable en las velocidades por segmento, lo cual se refleja en los resultados.Universidad de Lima2023-07-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/623010.26439/interfases2023.n017.6230Interfases; No. 017 (2023); 96-122Interfases; Núm. 017 (2023); 96-122Interfases; n. 017 (2023); 96-1221993-491210.26439/interfases2023.n017reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230/6390https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230/6391https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.ulima.edu.pe:article/62302024-05-23T22:53:22Z |
dc.title.none.fl_str_mv |
Flight plan optimization for multiple drones in construction sites Optimización de planes de vuelo para múltiples drones en zonas de construcción |
title |
Flight plan optimization for multiple drones in construction sites |
spellingShingle |
Flight plan optimization for multiple drones in construction sites Sotelo Vila, Alvaro dynamic programming flight planner surveillance drones genetic alorithm programación dinámica planificador de vuelo drones de vigilancia algoritmo genético |
title_short |
Flight plan optimization for multiple drones in construction sites |
title_full |
Flight plan optimization for multiple drones in construction sites |
title_fullStr |
Flight plan optimization for multiple drones in construction sites |
title_full_unstemmed |
Flight plan optimization for multiple drones in construction sites |
title_sort |
Flight plan optimization for multiple drones in construction sites |
dc.creator.none.fl_str_mv |
Sotelo Vila, Alvaro Ramírez Cerna, Lourdes |
author |
Sotelo Vila, Alvaro |
author_facet |
Sotelo Vila, Alvaro Ramírez Cerna, Lourdes |
author_role |
author |
author2 |
Ramírez Cerna, Lourdes |
author2_role |
author |
dc.subject.none.fl_str_mv |
dynamic programming flight planner surveillance drones genetic alorithm programación dinámica planificador de vuelo drones de vigilancia algoritmo genético |
topic |
dynamic programming flight planner surveillance drones genetic alorithm programación dinámica planificador de vuelo drones de vigilancia algoritmo genético |
description |
The construction sector is searching for new technologies, such as drones, that prove helpful for the surveillance and supervision of construction sites, especially in pandemic situations. This research proposes designing flight planning models to optimize flight time and speed. The main objective is to develop a model that allows multiple drones to carry out supervision tasks in construction areas. In this regard, it presents a dynamic programming model and a metaheuristic based on genetic algorithms, both applied for optimizing flight plans with multiple drones. The development process involves planning the route that the drones will follow by formulating the problem with the corresponding parameters. The next step is to generate a model for the dynamic programming algorithm, which is then validated using a genetic algorithm. The proposals implemented in Python were tested in 14 scenarios, gradually increasing in complexity. The dynamic programming-based model significantly improves planning time in all scenarios, achieving an average difference of 281,34 seconds or 4 minutes and 47 seconds, 98,01 % better than the genetic algorithm. Additionally, there is a considerable improvement in segment speeds, as the results show. A paired test evaluated these advancements. The hypothesis is supported with a p-value of 0,0031 for time and 0,0071 for the gain obtained by the objective function in both cases. This confirms the superiority of the dynamic programming algorithm compared to the genetic algorithm. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-07-31 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230 10.26439/interfases2023.n017.6230 |
url |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230 |
identifier_str_mv |
10.26439/interfases2023.n017.6230 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230/6390 https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230/6391 |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Interfases; No. 017 (2023); 96-122 Interfases; Núm. 017 (2023); 96-122 Interfases; n. 017 (2023); 96-122 1993-4912 10.26439/interfases2023.n017 reponame:Revistas - Universidad de Lima instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
Revistas - Universidad de Lima |
collection |
Revistas - Universidad de Lima |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1841719311581839360 |
score |
12.873224 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).