Flight plan optimization for multiple drones in construction sites

Descripción del Articulo

The construction sector is searching for new technologies, such as drones, that prove helpful for the surveillance and supervision of construction sites, especially in pandemic situations. This research proposes designing flight planning models to optimize flight time and speed. The main objective i...

Descripción completa

Detalles Bibliográficos
Autores: Sotelo Vila, Alvaro, Ramírez Cerna, Lourdes
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/6230
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230
Nivel de acceso:acceso abierto
Materia:dynamic programming
flight planner
surveillance drones
genetic alorithm
programación dinámica
planificador de vuelo
drones de vigilancia
algoritmo genético
id REVULIMA_5299de9d4e9fee0b7dda075430d3deaf
oai_identifier_str oai:revistas.ulima.edu.pe:article/6230
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
spelling Flight plan optimization for multiple drones in construction sitesOptimización de planes de vuelo para múltiples drones en zonas de construcciónSotelo Vila, AlvaroRamírez Cerna, Lourdesdynamic programmingflight plannersurveillance dronesgenetic alorithmprogramación dinámicaplanificador de vuelodrones de vigilanciaalgoritmo genéticoThe construction sector is searching for new technologies, such as drones, that prove helpful for the surveillance and supervision of construction sites, especially in pandemic situations. This research proposes designing flight planning models to optimize flight time and speed. The main objective is to develop a model that allows multiple drones to carry out supervision tasks in construction areas. In this regard, it presents a dynamic programming model and a metaheuristic based on genetic algorithms, both applied for optimizing flight plans with multiple drones. The development process involves planning the route that the drones will follow by formulating the problem with the corresponding parameters. The next step is to generate a model for the dynamic programming algorithm, which is then validated using a genetic algorithm. The proposals implemented in Python were tested in 14 scenarios, gradually increasing in complexity. The dynamic programming-based model significantly improves planning time in all scenarios, achieving an average difference of 281,34 seconds or 4 minutes and 47 seconds, 98,01 % better than the genetic algorithm. Additionally, there is a considerable improvement in segment speeds, as the results show. A paired test evaluated these advancements. The hypothesis is supported with a p-value of 0,0031 for time and 0,0071 for the gain obtained by the objective function in both cases. This confirms the superiority of the dynamic programming algorithm compared to the genetic algorithm.El sector de la construcción ha encontrado en los drones una tecnología útil para la vigilancia y supervisión de obras, en especial desde la pandemia del COVID-19. Esta investigación propone el diseño de modelos de planificación de vuelo con el fin de optimizar su tiempo y velocidad. El objetivo es desarrollar un modelo que permita emplear múltiples drones para llevar a cabo tareas de supervisión en zonas de construcción. En este sentido, se presenta un modelo de programación dinámica y una metaheurística basada en algoritmo genético, ambos aplicados para la optimización de planes de vuelo con múltiples drones. Las propuestas implementadas en Python han sido probadas en 14 escenarios, incrementando gradualmente la complejidad. En todos ellos, el modelo basado en programación dinámica muestra mejoras significativas en el tiempo de planificación, obteniendo una diferencia promedio de 281,34 segundos o 4 minutos y 47 segundos, lo cual es un 98,01 % superior al algoritmo genético. Además, se observa una mejora considerable en las velocidades por segmento, lo cual se refleja en los resultados.Universidad de Lima2023-07-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/623010.26439/interfases2023.n017.6230Interfases; No. 017 (2023); 96-122Interfases; Núm. 017 (2023); 96-122Interfases; n. 017 (2023); 96-1221993-491210.26439/interfases2023.n017reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230/6390https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230/6391https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.ulima.edu.pe:article/62302024-05-23T22:53:22Z
dc.title.none.fl_str_mv Flight plan optimization for multiple drones in construction sites
Optimización de planes de vuelo para múltiples drones en zonas de construcción
title Flight plan optimization for multiple drones in construction sites
spellingShingle Flight plan optimization for multiple drones in construction sites
Sotelo Vila, Alvaro
dynamic programming
flight planner
surveillance drones
genetic alorithm
programación dinámica
planificador de vuelo
drones de vigilancia
algoritmo genético
title_short Flight plan optimization for multiple drones in construction sites
title_full Flight plan optimization for multiple drones in construction sites
title_fullStr Flight plan optimization for multiple drones in construction sites
title_full_unstemmed Flight plan optimization for multiple drones in construction sites
title_sort Flight plan optimization for multiple drones in construction sites
dc.creator.none.fl_str_mv Sotelo Vila, Alvaro
Ramírez Cerna, Lourdes
author Sotelo Vila, Alvaro
author_facet Sotelo Vila, Alvaro
Ramírez Cerna, Lourdes
author_role author
author2 Ramírez Cerna, Lourdes
author2_role author
dc.subject.none.fl_str_mv dynamic programming
flight planner
surveillance drones
genetic alorithm
programación dinámica
planificador de vuelo
drones de vigilancia
algoritmo genético
topic dynamic programming
flight planner
surveillance drones
genetic alorithm
programación dinámica
planificador de vuelo
drones de vigilancia
algoritmo genético
description The construction sector is searching for new technologies, such as drones, that prove helpful for the surveillance and supervision of construction sites, especially in pandemic situations. This research proposes designing flight planning models to optimize flight time and speed. The main objective is to develop a model that allows multiple drones to carry out supervision tasks in construction areas. In this regard, it presents a dynamic programming model and a metaheuristic based on genetic algorithms, both applied for optimizing flight plans with multiple drones. The development process involves planning the route that the drones will follow by formulating the problem with the corresponding parameters. The next step is to generate a model for the dynamic programming algorithm, which is then validated using a genetic algorithm. The proposals implemented in Python were tested in 14 scenarios, gradually increasing in complexity. The dynamic programming-based model significantly improves planning time in all scenarios, achieving an average difference of 281,34 seconds or 4 minutes and 47 seconds, 98,01 % better than the genetic algorithm. Additionally, there is a considerable improvement in segment speeds, as the results show. A paired test evaluated these advancements. The hypothesis is supported with a p-value of 0,0031 for time and 0,0071 for the gain obtained by the objective function in both cases. This confirms the superiority of the dynamic programming algorithm compared to the genetic algorithm.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230
10.26439/interfases2023.n017.6230
url https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230
identifier_str_mv 10.26439/interfases2023.n017.6230
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230/6390
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/6230/6391
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Interfases; No. 017 (2023); 96-122
Interfases; Núm. 017 (2023); 96-122
Interfases; n. 017 (2023); 96-122
1993-4912
10.26439/interfases2023.n017
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1841719311581839360
score 12.873224
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).