Application of Machine Learning in Financial Credit Risk Management: A systematic review
Descripción del Articulo
Banking risk management can be divided into the following typology: credit risk, market risk, operational risk, and liquidity risk, the first being the most important type of risk for the financial sector. This article aims to show the advantages and disadvantages of implementing Machine Learning al...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2022 |
Institución: | Universidad de Lima |
Repositorio: | Revistas - Universidad de Lima |
Lenguaje: | español |
OAI Identifier: | oai:revistas.ulima.edu.pe:article/5898 |
Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898 |
Nivel de acceso: | acceso abierto |
Materia: | machine learning ML management risk credit algorithm gestión riesgo crédito algoritmo |
id |
REVULIMA_253ead8cc76d87c3fe1a5ab36c6a633b |
---|---|
oai_identifier_str |
oai:revistas.ulima.edu.pe:article/5898 |
network_acronym_str |
REVULIMA |
network_name_str |
Revistas - Universidad de Lima |
repository_id_str |
|
spelling |
Application of Machine Learning in Financial Credit Risk Management: A systematic reviewAplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemáticaHermitaño Castro, Juler Andersonmachine learningMLmanagementriskcreditalgorithmmachine learningMLgestiónriesgocréditoalgoritmoBanking risk management can be divided into the following typology: credit risk, market risk, operational risk, and liquidity risk, the first being the most important type of risk for the financial sector. This article aims to show the advantages and disadvantages of implementing Machine Learning algorithms in credit risk management. A systematic literature review was carried out with the PICo search strategy, and 12 articles were selected. The results show that credit risk is the most relevant. In addition, some of the Machine Learning algorithms have already begun to be implemented; however, some have significant disadvantages, such as not being able to explain the model's operation and are considered a black box. In this sense, it discourages implementation because regulatory bodies require that a model be explainable, interpretable and transparent. Faced with this, it has been decided to make hybrid models between algorithms that are not easy to explain with traditional ones, such as logistic regression. Also, it is presented as an alternative to using methods such as SHAPley Additive exPlanations (SHAP) that help the interpretation of these models.La gestión de riesgos bancarios puede ser dividida en las siguientes tipologías: riesgo crediticio, riesgo de mercado, riesgo operativo y riesgo de liquidez, siendo el primero el tipo de riesgo más importante para el sector financiero. El presente artículo tiene como objetivo mostrar las ventajas y desventajas de la implementación de los algoritmos de machine learning en la gestión de riesgos de crédito y, a partir de esto, mostrar cuál tiene mejor rendimiento, señalando también las desventajas que puedan presentar. Para ello se realizó una revisión sistemática de la literatura con la estrategia de búsqueda PICo y se seleccionaron doce artículos. Los resultados reflejan que el riesgo de crédito es el de mayor relevancia. Además, algunos de los algoritmos de machine learning ya han comenzado a implementarse, sin embargo, algunos presentan desventajas resaltantes como el no poder explicar el funcionamiento del modelo y ser considerados como caja negra. En ese sentido, desfavorece la implementación debido a que los organismos regulatorios exigen que un modelo deba ser explicable, interpretable y transparente. Frente a ello, se ha optado por realizar modelos híbridos con algoritmos que no son sencillos de explicar, como aquellos modelos tradicionales de regresión logística. También, se presenta como alternativa utilizar métodos como SHAPley Additive exPlanations (SHAP) que ayudan a la interpretación de dichos modelos.Universidad de Lima2022-07-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/589810.26439/interfases2022.n015.5898Interfases; No. 015 (2022); 160-178Interfases; Núm. 015 (2022); 160-178Interfases; n. 015 (2022); 160-1781993-491210.26439/interfases2022.n015reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898/5789https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898/5796https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.ulima.edu.pe:article/58982023-07-24T13:33:18Z |
dc.title.none.fl_str_mv |
Application of Machine Learning in Financial Credit Risk Management: A systematic review Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática |
title |
Application of Machine Learning in Financial Credit Risk Management: A systematic review |
spellingShingle |
Application of Machine Learning in Financial Credit Risk Management: A systematic review Hermitaño Castro, Juler Anderson machine learning ML management risk credit algorithm machine learning ML gestión riesgo crédito algoritmo |
title_short |
Application of Machine Learning in Financial Credit Risk Management: A systematic review |
title_full |
Application of Machine Learning in Financial Credit Risk Management: A systematic review |
title_fullStr |
Application of Machine Learning in Financial Credit Risk Management: A systematic review |
title_full_unstemmed |
Application of Machine Learning in Financial Credit Risk Management: A systematic review |
title_sort |
Application of Machine Learning in Financial Credit Risk Management: A systematic review |
dc.creator.none.fl_str_mv |
Hermitaño Castro, Juler Anderson |
author |
Hermitaño Castro, Juler Anderson |
author_facet |
Hermitaño Castro, Juler Anderson |
author_role |
author |
dc.subject.none.fl_str_mv |
machine learning ML management risk credit algorithm machine learning ML gestión riesgo crédito algoritmo |
topic |
machine learning ML management risk credit algorithm machine learning ML gestión riesgo crédito algoritmo |
description |
Banking risk management can be divided into the following typology: credit risk, market risk, operational risk, and liquidity risk, the first being the most important type of risk for the financial sector. This article aims to show the advantages and disadvantages of implementing Machine Learning algorithms in credit risk management. A systematic literature review was carried out with the PICo search strategy, and 12 articles were selected. The results show that credit risk is the most relevant. In addition, some of the Machine Learning algorithms have already begun to be implemented; however, some have significant disadvantages, such as not being able to explain the model's operation and are considered a black box. In this sense, it discourages implementation because regulatory bodies require that a model be explainable, interpretable and transparent. Faced with this, it has been decided to make hybrid models between algorithms that are not easy to explain with traditional ones, such as logistic regression. Also, it is presented as an alternative to using methods such as SHAPley Additive exPlanations (SHAP) that help the interpretation of these models. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-07-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898 10.26439/interfases2022.n015.5898 |
url |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898 |
identifier_str_mv |
10.26439/interfases2022.n015.5898 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898/5789 https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898/5796 |
dc.rights.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.publisher.none.fl_str_mv |
Universidad de Lima |
publisher.none.fl_str_mv |
Universidad de Lima |
dc.source.none.fl_str_mv |
Interfases; No. 015 (2022); 160-178 Interfases; Núm. 015 (2022); 160-178 Interfases; n. 015 (2022); 160-178 1993-4912 10.26439/interfases2022.n015 reponame:Revistas - Universidad de Lima instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
Revistas - Universidad de Lima |
collection |
Revistas - Universidad de Lima |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1841719310264827904 |
score |
12.860808 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).