Application of Machine Learning in Financial Credit Risk Management: A systematic review

Descripción del Articulo

Banking risk management can be divided into the following typology: credit risk, market risk, operational risk, and liquidity risk, the first being the most important type of risk for the financial sector. This article aims to show the advantages and disadvantages of implementing Machine Learning al...

Descripción completa

Detalles Bibliográficos
Autor: Hermitaño Castro, Juler Anderson
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:revistas.ulima.edu.pe:article/5898
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898
Nivel de acceso:acceso abierto
Materia:machine learning
ML
management
risk
credit
algorithm
gestión
riesgo
crédito
algoritmo
id REVULIMA_253ead8cc76d87c3fe1a5ab36c6a633b
oai_identifier_str oai:revistas.ulima.edu.pe:article/5898
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
spelling Application of Machine Learning in Financial Credit Risk Management: A systematic reviewAplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemáticaHermitaño Castro, Juler Andersonmachine learningMLmanagementriskcreditalgorithmmachine learningMLgestiónriesgocréditoalgoritmoBanking risk management can be divided into the following typology: credit risk, market risk, operational risk, and liquidity risk, the first being the most important type of risk for the financial sector. This article aims to show the advantages and disadvantages of implementing Machine Learning algorithms in credit risk management. A systematic literature review was carried out with the PICo search strategy, and 12 articles were selected. The results show that credit risk is the most relevant. In addition, some of the Machine Learning algorithms have already begun to be implemented; however, some have significant disadvantages, such as not being able to explain the model's operation and are considered a black box. In this sense, it discourages implementation because regulatory bodies require that a model be explainable, interpretable and transparent. Faced with this, it has been decided to make hybrid models between algorithms that are not easy to explain with traditional ones, such as logistic regression. Also, it is presented as an alternative to using methods such as SHAPley Additive exPlanations (SHAP) that help the interpretation of these models.La gestión de riesgos bancarios puede ser dividida en las siguientes tipologías: riesgo crediticio, riesgo de mercado, riesgo operativo y riesgo de liquidez, siendo el primero el tipo de riesgo más importante para el sector financiero. El presente artículo tiene como objetivo mostrar las ventajas y desventajas de la implementación de los algoritmos de machine learning en la gestión de riesgos de crédito y, a partir de esto, mostrar cuál tiene mejor rendimiento, señalando también las desventajas que puedan presentar. Para ello se realizó una revisión sistemática de la literatura con la estrategia de búsqueda PICo y se seleccionaron doce artículos. Los resultados reflejan que el riesgo de crédito es el de mayor relevancia. Además, algunos de los algoritmos de machine learning ya han comenzado a implementarse, sin embargo, algunos presentan desventajas resaltantes como el no poder explicar el funcionamiento del modelo y ser considerados como caja negra. En ese sentido, desfavorece la implementación debido a que los organismos regulatorios exigen que un modelo deba ser explicable, interpretable y transparente. Frente a ello, se ha optado por realizar modelos híbridos con algoritmos que no son sencillos de explicar, como aquellos modelos tradicionales de regresión logística. También, se presenta como alternativa utilizar métodos como SHAPley Additive exPlanations (SHAP) que ayudan a la interpretación de dichos modelos.Universidad de Lima2022-07-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/htmlhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/589810.26439/interfases2022.n015.5898Interfases; No. 015 (2022); 160-178Interfases; Núm. 015 (2022); 160-178Interfases; n. 015 (2022); 160-1781993-491210.26439/interfases2022.n015reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898/5789https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898/5796https://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistas.ulima.edu.pe:article/58982023-07-24T13:33:18Z
dc.title.none.fl_str_mv Application of Machine Learning in Financial Credit Risk Management: A systematic review
Aplicación de Machine Learning en la Gestión de Riesgo de Crédito Financiero: Una revisión sistemática
title Application of Machine Learning in Financial Credit Risk Management: A systematic review
spellingShingle Application of Machine Learning in Financial Credit Risk Management: A systematic review
Hermitaño Castro, Juler Anderson
machine learning
ML
management
risk
credit
algorithm
machine learning
ML
gestión
riesgo
crédito
algoritmo
title_short Application of Machine Learning in Financial Credit Risk Management: A systematic review
title_full Application of Machine Learning in Financial Credit Risk Management: A systematic review
title_fullStr Application of Machine Learning in Financial Credit Risk Management: A systematic review
title_full_unstemmed Application of Machine Learning in Financial Credit Risk Management: A systematic review
title_sort Application of Machine Learning in Financial Credit Risk Management: A systematic review
dc.creator.none.fl_str_mv Hermitaño Castro, Juler Anderson
author Hermitaño Castro, Juler Anderson
author_facet Hermitaño Castro, Juler Anderson
author_role author
dc.subject.none.fl_str_mv machine learning
ML
management
risk
credit
algorithm
machine learning
ML
gestión
riesgo
crédito
algoritmo
topic machine learning
ML
management
risk
credit
algorithm
machine learning
ML
gestión
riesgo
crédito
algoritmo
description Banking risk management can be divided into the following typology: credit risk, market risk, operational risk, and liquidity risk, the first being the most important type of risk for the financial sector. This article aims to show the advantages and disadvantages of implementing Machine Learning algorithms in credit risk management. A systematic literature review was carried out with the PICo search strategy, and 12 articles were selected. The results show that credit risk is the most relevant. In addition, some of the Machine Learning algorithms have already begun to be implemented; however, some have significant disadvantages, such as not being able to explain the model's operation and are considered a black box. In this sense, it discourages implementation because regulatory bodies require that a model be explainable, interpretable and transparent. Faced with this, it has been decided to make hybrid models between algorithms that are not easy to explain with traditional ones, such as logistic regression. Also, it is presented as an alternative to using methods such as SHAPley Additive exPlanations (SHAP) that help the interpretation of these models.
publishDate 2022
dc.date.none.fl_str_mv 2022-07-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898
10.26439/interfases2022.n015.5898
url https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898
identifier_str_mv 10.26439/interfases2022.n015.5898
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898/5789
https://revistas.ulima.edu.pe/index.php/Interfases/article/view/5898/5796
dc.rights.none.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Interfases; No. 015 (2022); 160-178
Interfases; Núm. 015 (2022); 160-178
Interfases; n. 015 (2022); 160-178
1993-4912
10.26439/interfases2022.n015
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1841719310264827904
score 12.860808
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).