Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processes

Descripción del Articulo

The present article proposes to design a model that provides a generic architecture which acts autonomously in public works contracting selection processes, in order to generate an automated decision criterion in the event of a tie. For the Simplified Tender selection process, in case of a tie, it i...

Descripción completa

Detalles Bibliográficos
Autor: Solís-Villanueva, Reiner
Formato: artículo
Fecha de Publicación:2018
Institución:Universidad de Lima
Repositorio:Revistas - Universidad de Lima
Lenguaje:español
OAI Identifier:oai:ojs.pkp.sfu.ca:article/2951
Enlace del recurso:https://revistas.ulima.edu.pe/index.php/Interfases/article/view/2951
Nivel de acceso:acceso abierto
Materia:artificial neural networks
decision-making
risk
redes neuronales artificiales
toma de decisiones
riesgo
id REVULIMA_1f066b60795c1e0c09f9e14583c6ee9d
oai_identifier_str oai:ojs.pkp.sfu.ca:article/2951
network_acronym_str REVULIMA
network_name_str Revistas - Universidad de Lima
repository_id_str
spelling Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processesTécnicas de inteligencia artificial para optimizar la eficiencia del procedimiento de selección para la contratación de obras públicasSolís-Villanueva, Reinerartificial neural networksdecision-makingriskredes neuronales artificialestoma de decisionesriesgoThe present article proposes to design a model that provides a generic architecture which acts autonomously in public works contracting selection processes, in order to generate an automated decision criterion in the event of a tie. For the Simplified Tender selection process, in case of a tie, it is proposed to choose the bidder by means of an electronic lottery based on a controlled randomization system of encryption and transformation. For the Public Bidding selection process, in the event of a tie, the bidder is chosen by means of a predicted compliance index according to the behavior of the companies when executing similar infrastructure projects. To this end, a model that predicts the probability of success or failure of the bidder to execute a project before initiating it is generated, using artificial neural networks as an analysis tool. This paper reviews the common characteristics of artificial neural networks.El presente artículo propone el diseño de un modelo que proporciona una arquitectura genérica que actúa en forma autónoma en los procedimientos de selección en la contratación de obras públicas, generando un criterio de decisión autómata en caso de empate. Para el procedimiento de selección Adjudicación Simplificada, en caso de empate, se propone la elección del postor mediante un sorteo electrónico basado en un sistema de aleatoriedad controlada de encriptación y transformación. Para el procedimiento de selección Licitación Pública, en caso de empate se propone la elección del postor mediante un índice de cumplimiento pronosticado de acuerdo con el comportamiento de las empresas en la ejecución de proyectos de infraestructura similares. Con este fin se genera un modelo que realiza la predicción de la probabilidad de éxito o fracaso del postor de ejecutar el proyecto antes de iniciarlo, usando redes neuronales artificiales como herramienta de análisis. En el presente documento se revisan las características comunes de las redes neuronales artificiales.Universidad de Lima2018-12-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/295110.26439/interfases2018.n011.2951Interfases; No. 011 (2018); 13-42Interfases; Núm. 011 (2018); 13-42Interfases; n. 011 (2018); 13-421993-491210.26439/interfases2018.n011reponame:Revistas - Universidad de Limainstname:Universidad de Limainstacron:ULIMAspahttps://revistas.ulima.edu.pe/index.php/Interfases/article/view/2951/3183Copyright (c) 2019 Interfacesinfo:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/29512023-07-24T13:32:31Z
dc.title.none.fl_str_mv Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processes
Técnicas de inteligencia artificial para optimizar la eficiencia del procedimiento de selección para la contratación de obras públicas
title Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processes
spellingShingle Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processes
Solís-Villanueva, Reiner
artificial neural networks
decision-making
risk
redes neuronales artificiales
toma de decisiones
riesgo
title_short Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processes
title_full Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processes
title_fullStr Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processes
title_full_unstemmed Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processes
title_sort Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processes
dc.creator.none.fl_str_mv Solís-Villanueva, Reiner
author Solís-Villanueva, Reiner
author_facet Solís-Villanueva, Reiner
author_role author
dc.subject.none.fl_str_mv artificial neural networks
decision-making
risk
redes neuronales artificiales
toma de decisiones
riesgo
topic artificial neural networks
decision-making
risk
redes neuronales artificiales
toma de decisiones
riesgo
description The present article proposes to design a model that provides a generic architecture which acts autonomously in public works contracting selection processes, in order to generate an automated decision criterion in the event of a tie. For the Simplified Tender selection process, in case of a tie, it is proposed to choose the bidder by means of an electronic lottery based on a controlled randomization system of encryption and transformation. For the Public Bidding selection process, in the event of a tie, the bidder is chosen by means of a predicted compliance index according to the behavior of the companies when executing similar infrastructure projects. To this end, a model that predicts the probability of success or failure of the bidder to execute a project before initiating it is generated, using artificial neural networks as an analysis tool. This paper reviews the common characteristics of artificial neural networks.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/2951
10.26439/interfases2018.n011.2951
url https://revistas.ulima.edu.pe/index.php/Interfases/article/view/2951
identifier_str_mv 10.26439/interfases2018.n011.2951
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulima.edu.pe/index.php/Interfases/article/view/2951/3183
dc.rights.none.fl_str_mv Copyright (c) 2019 Interfaces
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2019 Interfaces
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Lima
publisher.none.fl_str_mv Universidad de Lima
dc.source.none.fl_str_mv Interfases; No. 011 (2018); 13-42
Interfases; Núm. 011 (2018); 13-42
Interfases; n. 011 (2018); 13-42
1993-4912
10.26439/interfases2018.n011
reponame:Revistas - Universidad de Lima
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str Revistas - Universidad de Lima
collection Revistas - Universidad de Lima
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846791801998934016
score 13.905282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).