Artificial intelligence techniques for optimizing the efficiency in public works contracting selection processes
Descripción del Articulo
The present article proposes to design a model that provides a generic architecture which acts autonomously in public works contracting selection processes, in order to generate an automated decision criterion in the event of a tie. For the Simplified Tender selection process, in case of a tie, it i...
| Autor: | |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2018 |
| Institución: | Universidad de Lima |
| Repositorio: | Revistas - Universidad de Lima |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.pkp.sfu.ca:article/2951 |
| Enlace del recurso: | https://revistas.ulima.edu.pe/index.php/Interfases/article/view/2951 |
| Nivel de acceso: | acceso abierto |
| Materia: | artificial neural networks decision-making risk redes neuronales artificiales toma de decisiones riesgo |
| Sumario: | The present article proposes to design a model that provides a generic architecture which acts autonomously in public works contracting selection processes, in order to generate an automated decision criterion in the event of a tie. For the Simplified Tender selection process, in case of a tie, it is proposed to choose the bidder by means of an electronic lottery based on a controlled randomization system of encryption and transformation. For the Public Bidding selection process, in the event of a tie, the bidder is chosen by means of a predicted compliance index according to the behavior of the companies when executing similar infrastructure projects. To this end, a model that predicts the probability of success or failure of the bidder to execute a project before initiating it is generated, using artificial neural networks as an analysis tool. This paper reviews the common characteristics of artificial neural networks. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).