Development of an artificial intelligence–based web application prototype for the early detection of respiratory diseases: Desarrollo de un prototipo de aplicación web basada en inteligencia artificial para la detección temprana de enfermedades respiratorias

Descripción del Articulo

Objective: To present the development of a web application prototype based on Artificial Intelligence (AI) for the early detection of respiratory diseases, in order to explore its applicability in timely diagnostic support. Materials and Methods: It uses the agile Scrumban methodology, which combine...

Descripción completa

Detalles Bibliográficos
Autores: Moquillaza-Alejos, Carlos, Rojas-Sosa, Fernando, Andrade-Mercado, Jorge, Castillo-Camac, Sebastian, Ramos-Cosi, Sebastian
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad de Ciencias y Humanidades
Repositorio:Health care & global health
Lenguaje:español
OAI Identifier:oai:ojs.openhgh.org:article/335
Enlace del recurso:http://revista.uch.edu.pe/index.php/hgh/article/view/335
Nivel de acceso:acceso abierto
Descripción
Sumario:Objective: To present the development of a web application prototype based on Artificial Intelligence (AI) for the early detection of respiratory diseases, in order to explore its applicability in timely diagnostic support. Materials and Methods: It uses the agile Scrumban methodology, which combines the Scrum structure with the flexibility of Kanban, allowing adaptive workflow management. The prototype design included the integration of machine learning models, such as convolutional neural networks (CNNs), applied to simulated and open-access clinical data. Expected results: The prototype incorporates a web interface aimed at healthcare professionals, with functionalities for patient management and preliminary data analysis using AI. Its application is expected to improve the accuracy of initial diagnosis and facilitate integration in resource-limited settings. Conclusions: This advanced protocol demonstrates the potential of AI for the early diagnosis of respiratory diseases. The next phase is proposed: pilot validation in simulated scenarios and subsequently, its evaluation in real clinical environments. Keywords: Artificial Intelligence, Mobile Aplications, Early Diagnosis, Respiratory Tract Diseases (Source: MeSH, NLM).
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).