Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometrics

Descripción del Articulo

The environmental crisis due to climate change has forced many States to direct efforts towards environmental transition to reduce the probability of occurrence of a situation with a negative impact on their population or environment. Peru is no exception. In this sense, the need arises to identify...

Descripción completa

Detalles Bibliográficos
Autor: Trujillo Córdova, Christian Moisés
Formato: artículo
Fecha de Publicación:2024
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:español
OAI Identifier:oai:revistaspuc:article/27539
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539
Nivel de acceso:acceso abierto
Materia:Risk society
Sustainable development
Socio-environmental vulnerability
Socio-environmental risk
Machine learning
Peru
Sociedad del riesgo
Desarrollo sostenible
Vulnerabilidad socioambiental
Riesgo socioambiental
Aprendizaje automatizado
Perú
id REVPUCP_ffb4782a3b97a3bfa943ae9afc356d15
oai_identifier_str oai:revistaspuc:article/27539
network_acronym_str REVPUCP
network_name_str Revistas - Pontificia Universidad Católica del Perú
repository_id_str
spelling Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometricsRiesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacialTrujillo Córdova, Christian MoisésRisk societySustainable developmentSocio-environmental vulnerabilitySocio-environmental riskMachine learningPeruSociedad del riesgoDesarrollo sostenibleVulnerabilidad socioambientalRiesgo socioambientalAprendizaje automatizadoPerúThe environmental crisis due to climate change has forced many States to direct efforts towards environmental transition to reduce the probability of occurrence of a situation with a negative impact on their population or environment. Peru is no exception. In this sense, the need arises to identify and categorize its districts according to a certain socio-environmental risk. Faced with this challenge, a multistage quantitative methodology was developed and implemented, which made use of both machine learning (supervised and unsupervised) and spatial econometrics. The results of this methodology, visualized through emerging risk indixes, evidenced the existence of 165 districts considered socio-environmental risk zones (SERZ, in Spanish known as ZRS), mostly located in the coastal strip. Finally, it is concluded that the pattern and replicability of urban development model in Peru is currently not coherent with efforts towards environmental conservation and preservation.La crisis ambiental por el cambio climático ha obligado a muchos Estados a dirigir esfuerzos hacia la transición medioambiental para reducir la probabilidad de ocurrencia de una situación con un impacto negativo sobre su población o medioambiente. El Perú no es la excepción. En tal sentido, surge la necesidad de identificar y categorizar sus distritos según un determinado riesgo socioambiental. Ante tal reto, se construyó e implementó una metodología cuantitativa multietápica, la cual hizo uso tanto del aprendizaje automatizado (supervisado y no supervisado) como de la econometría espacial. Los resultados de la metodología, visualizados a través de índices de riesgo emergentes, evidenciaron la existencia de 165 distritos considerados zonas con riesgo socioambiental (ZRS), ubicados en su mayoría en la franja costera. Finalmente, se concluye que el patrón y replicabilidad del modelo de desarrollo urbanístico en el Perú actualmente no es coherente con los esfuerzos de conservación y preservación del medioambiente.Pontificia Universidad Católica del Perú. Instituto de la Naturaleza, Tierra y Energía (INTE-PUCP)2024-04-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/xmltext/htmlhttp://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/2753910.18800/kawsaypacha.202401.A007Revista Kawsaypacha: Sociedad y Medio Ambiente; Núm. 13 (2024): Revista Kawsaypacha; A-0072709-36892523-2894reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPspahttp://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26360http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26483http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26531Derechos de autor 2024 Christian Moisés Trujillo Córdovahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistaspuc:article/275392024-05-10T19:34:35Z
dc.title.none.fl_str_mv Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometrics
Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial
title Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometrics
spellingShingle Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometrics
Trujillo Córdova, Christian Moisés
Risk society
Sustainable development
Socio-environmental vulnerability
Socio-environmental risk
Machine learning
Peru
Sociedad del riesgo
Desarrollo sostenible
Vulnerabilidad socioambiental
Riesgo socioambiental
Aprendizaje automatizado
Perú
title_short Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometrics
title_full Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometrics
title_fullStr Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometrics
title_full_unstemmed Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometrics
title_sort Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometrics
dc.creator.none.fl_str_mv Trujillo Córdova, Christian Moisés
author Trujillo Córdova, Christian Moisés
author_facet Trujillo Córdova, Christian Moisés
author_role author
dc.subject.none.fl_str_mv Risk society
Sustainable development
Socio-environmental vulnerability
Socio-environmental risk
Machine learning
Peru
Sociedad del riesgo
Desarrollo sostenible
Vulnerabilidad socioambiental
Riesgo socioambiental
Aprendizaje automatizado
Perú
topic Risk society
Sustainable development
Socio-environmental vulnerability
Socio-environmental risk
Machine learning
Peru
Sociedad del riesgo
Desarrollo sostenible
Vulnerabilidad socioambiental
Riesgo socioambiental
Aprendizaje automatizado
Perú
description The environmental crisis due to climate change has forced many States to direct efforts towards environmental transition to reduce the probability of occurrence of a situation with a negative impact on their population or environment. Peru is no exception. In this sense, the need arises to identify and categorize its districts according to a certain socio-environmental risk. Faced with this challenge, a multistage quantitative methodology was developed and implemented, which made use of both machine learning (supervised and unsupervised) and spatial econometrics. The results of this methodology, visualized through emerging risk indixes, evidenced the existence of 165 districts considered socio-environmental risk zones (SERZ, in Spanish known as ZRS), mostly located in the coastal strip. Finally, it is concluded that the pattern and replicability of urban development model in Peru is currently not coherent with efforts towards environmental conservation and preservation.
publishDate 2024
dc.date.none.fl_str_mv 2024-04-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539
10.18800/kawsaypacha.202401.A007
url http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539
identifier_str_mv 10.18800/kawsaypacha.202401.A007
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26360
http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26483
http://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26531
dc.rights.none.fl_str_mv Derechos de autor 2024 Christian Moisés Trujillo Córdova
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2024 Christian Moisés Trujillo Córdova
http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/xml
text/html
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú. Instituto de la Naturaleza, Tierra y Energía (INTE-PUCP)
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú. Instituto de la Naturaleza, Tierra y Energía (INTE-PUCP)
dc.source.none.fl_str_mv Revista Kawsaypacha: Sociedad y Medio Ambiente; Núm. 13 (2024): Revista Kawsaypacha; A-007
2709-3689
2523-2894
reponame:Revistas - Pontificia Universidad Católica del Perú
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str Revistas - Pontificia Universidad Católica del Perú
collection Revistas - Pontificia Universidad Católica del Perú
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1840901023035555840
score 13.894945
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).