Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
Descripción del Articulo
The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random mi...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2021 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | Revistas - Pontificia Universidad Católica del Perú |
Lenguaje: | inglés |
OAI Identifier: | oai:revistaspuc:article/23710 |
Enlace del recurso: | http://revistas.pucp.edu.pe/index.php/economia/article/view/23710 |
Nivel de acceso: | acceso abierto |
Materia: | Random missing data Two stage estimators Imputation Spatial lag model |
id |
REVPUCP_cfefec52ee0b548fadc97f58d252e46b |
---|---|
oai_identifier_str |
oai:revistaspuc:article/23710 |
network_acronym_str |
REVPUCP |
network_name_str |
Revistas - Pontificia Universidad Católica del Perú |
repository_id_str |
|
spelling |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with ImputationIzaguirre, AlejandroRandom missing dataTwo stage estimatorsImputationSpatial lag modelThe main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random missing data in the dependent variable. Unlike the IBG2SLS estimator presented in Wang and Lee (2013) which impute all missing data we only impute missing data in the spatial lag. Our first proposal is an alternative version of the IBG2SLS estimator, the second one is based on an approximation to the optimal instruments matrix and the third one is an alternative equivalent to the first. Thorough a Monte Carlo simulation we assess the estimators performance under finite samples. Results show a good performance for all estimators, moreover, results are quite similar to the IBG2SLS estimator suggesting that a complete imputation (as IBG2SLS does) does not add information.Pontificia Universidad Católica del Perú2021-05-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.pucp.edu.pe/index.php/economia/article/view/2371010.18800/economia.202101.001Economía; Volume 44 Issue 87 (2021); 1-192304-43060254-4415reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPenghttp://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistaspuc:article/237102022-04-12T13:44:15Z |
dc.title.none.fl_str_mv |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
title |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
spellingShingle |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation Izaguirre, Alejandro Random missing data Two stage estimators Imputation Spatial lag model |
title_short |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
title_full |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
title_fullStr |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
title_full_unstemmed |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
title_sort |
Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation |
dc.creator.none.fl_str_mv |
Izaguirre, Alejandro |
author |
Izaguirre, Alejandro |
author_facet |
Izaguirre, Alejandro |
author_role |
author |
dc.subject.none.fl_str_mv |
Random missing data Two stage estimators Imputation Spatial lag model |
topic |
Random missing data Two stage estimators Imputation Spatial lag model |
description |
The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random missing data in the dependent variable. Unlike the IBG2SLS estimator presented in Wang and Lee (2013) which impute all missing data we only impute missing data in the spatial lag. Our first proposal is an alternative version of the IBG2SLS estimator, the second one is based on an approximation to the optimal instruments matrix and the third one is an alternative equivalent to the first. Thorough a Monte Carlo simulation we assess the estimators performance under finite samples. Results show a good performance for all estimators, moreover, results are quite similar to the IBG2SLS estimator suggesting that a complete imputation (as IBG2SLS does) does not add information. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://revistas.pucp.edu.pe/index.php/economia/article/view/23710 10.18800/economia.202101.001 |
url |
http://revistas.pucp.edu.pe/index.php/economia/article/view/23710 |
identifier_str_mv |
10.18800/economia.202101.001 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645 |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
publisher.none.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.source.none.fl_str_mv |
Economía; Volume 44 Issue 87 (2021); 1-19 2304-4306 0254-4415 reponame:Revistas - Pontificia Universidad Católica del Perú instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
Revistas - Pontificia Universidad Católica del Perú |
collection |
Revistas - Pontificia Universidad Católica del Perú |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1836736806585892864 |
score |
13.95948 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).