Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation

Descripción del Articulo

The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random mi...

Descripción completa

Detalles Bibliográficos
Autor: Izaguirre, Alejandro
Formato: artículo
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:inglés
OAI Identifier:oai:revistaspuc:article/23710
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/economia/article/view/23710
Nivel de acceso:acceso abierto
Materia:Random missing data
Two stage estimators
Imputation
Spatial lag model
id REVPUCP_cfefec52ee0b548fadc97f58d252e46b
oai_identifier_str oai:revistaspuc:article/23710
network_acronym_str REVPUCP
network_name_str Revistas - Pontificia Universidad Católica del Perú
repository_id_str
spelling Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with ImputationIzaguirre, AlejandroRandom missing dataTwo stage estimatorsImputationSpatial lag modelThe main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random missing data in the dependent variable. Unlike the IBG2SLS estimator presented in Wang and Lee (2013) which impute all missing data we only impute missing data in the spatial lag. Our first proposal is an alternative version of the IBG2SLS estimator, the second one is based on an approximation to the optimal instruments matrix and the third one is an alternative equivalent to the first. Thorough a Monte Carlo simulation we assess the estimators performance under finite samples. Results show a good performance for all estimators, moreover, results are quite similar to the IBG2SLS estimator suggesting that a complete imputation (as IBG2SLS does) does not add information.Pontificia Universidad Católica del Perú2021-05-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://revistas.pucp.edu.pe/index.php/economia/article/view/2371010.18800/economia.202101.001Economía; Volume 44 Issue 87 (2021); 1-192304-43060254-4415reponame:Revistas - Pontificia Universidad Católica del Perúinstname:Pontificia Universidad Católica del Perúinstacron:PUCPenghttp://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:revistaspuc:article/237102022-04-12T13:44:15Z
dc.title.none.fl_str_mv Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
title Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
spellingShingle Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
Izaguirre, Alejandro
Random missing data
Two stage estimators
Imputation
Spatial lag model
title_short Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
title_full Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
title_fullStr Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
title_full_unstemmed Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
title_sort Estimation of Spatial Lag Model Under Random Missing Data in the Dependent Variable. Two Stage Estimator with Imputation
dc.creator.none.fl_str_mv Izaguirre, Alejandro
author Izaguirre, Alejandro
author_facet Izaguirre, Alejandro
author_role author
dc.subject.none.fl_str_mv Random missing data
Two stage estimators
Imputation
Spatial lag model
topic Random missing data
Two stage estimators
Imputation
Spatial lag model
description The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under missing data context. We present three alternatives estimators for the SLM based on Two Stage Least Squares estimation methodology. The estimators are eÿcient within their type and consistent under random missing data in the dependent variable. Unlike the IBG2SLS estimator presented in Wang and Lee (2013) which impute all missing data we only impute missing data in the spatial lag. Our first proposal is an alternative version of the IBG2SLS estimator, the second one is based on an approximation to the optimal instruments matrix and the third one is an alternative equivalent to the first. Thorough a Monte Carlo simulation we assess the estimators performance under finite samples. Results show a good performance for all estimators, moreover, results are quite similar to the IBG2SLS estimator suggesting that a complete imputation (as IBG2SLS does) does not add information.
publishDate 2021
dc.date.none.fl_str_mv 2021-05-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/23710
10.18800/economia.202101.001
url http://revistas.pucp.edu.pe/index.php/economia/article/view/23710
identifier_str_mv 10.18800/economia.202101.001
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/23710/22645
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
publisher.none.fl_str_mv Pontificia Universidad Católica del Perú
dc.source.none.fl_str_mv Economía; Volume 44 Issue 87 (2021); 1-19
2304-4306
0254-4415
reponame:Revistas - Pontificia Universidad Católica del Perú
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str Revistas - Pontificia Universidad Católica del Perú
collection Revistas - Pontificia Universidad Católica del Perú
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1836736806585892864
score 13.95948
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).