Corporate governance characteristics and valuation: Inferences from quantile regression

Descripción del Articulo

Prior literature on corporate governance and performance provides mixed evidence on the impact of various corporate governance measures on performance indicators. However, most of literatures adopt the Ordinary Least Square (OLS). This method is based on the central tendency, which may not appropria...

Descripción completa

Detalles Bibliográficos
Autores: Shawtari, Fekri Ali, Abdelnabi Salem, Milad, Iqbal Hussain, Hafezali, Alaeddin, Omar, Bin Thabit, Omer
Formato: artículo
Fecha de Publicación:2016
Institución:Universidad ESAN
Repositorio:Revistas - Universidad ESAN
Lenguaje:inglés
OAI Identifier:oai:ojs.pkp.sfu.ca:article/141
Enlace del recurso:https://revistas.esan.edu.pe/index.php/jefas/article/view/141
Nivel de acceso:acceso abierto
Materia:Desempeno
Gobierno corporativo
OLS
Regresión de cuantiles
id REVESAN_123d62026c8c8953f68ab15dae58b209
oai_identifier_str oai:ojs.pkp.sfu.ca:article/141
network_acronym_str REVESAN
network_name_str Revistas - Universidad ESAN
repository_id_str .
spelling Corporate governance characteristics and valuation: Inferences from quantile regressionShawtari, Fekri Ali Abdelnabi Salem, MiladIqbal Hussain, Hafezali Alaeddin, Omar Bin Thabit, OmerDesempenoGobierno corporativoOLSRegresión de cuantilesPrior literature on corporate governance and performance provides mixed evidence on the impact of various corporate governance measures on performance indicators. However, most of literatures adopt the Ordinary Least Square (OLS). This method is based on the central tendency, which may not appropriately represent the reality in cases where the dependent variable ranges between upper and lower values and hence the relationship may not be homogenous across different percentiles of the dependent variables. A variable having a positive impact based on the central tendency for firms may not be the case for the firms in the upper or lower bounds. Thus, estimating the means using OLS may not reflect and represent the heterogeneity in the estimated relationship. Therefore, quantile regression estimates the relationship at any point conditional on the distribution of dependent variable. This would enable us to generate various estimated coefficient at certain quantile of dependent variable. Therefore, the objective of the study is twofold. First, this study aims to investigate the relationship between corporate governance and performance using OLS. Second,this work further explores the impact of corporate governance mechanisms on performance using quantile regression so as to compare and to shed light on whether there is heterogeneity in the influence of these variables on the performance of listed companies across quantiles. The results of the study provide evidence that quantile approach shows inconsistency in the result with OLS and hence indicating the impact depends on the scale size. This theoretically provides further support that OLS may represent a poor estimation approach for the reality of firms. Doi: https://​doi.org/10.1016/j.jefas.2016.06.004Universidad ESAN2016-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleapplication/pdfhttps://revistas.esan.edu.pe/index.php/jefas/article/view/141Journal of Economics, Finance and Administrative Science; Vol. 21 No. 41 (2016): July - December; 81-88Journal of Economics, Finance and Administrative Science; Vol. 21 Núm. 41 (2016): July - December; 81-882218-06482077-1886reponame:Revistas - Universidad ESANinstname:Universidad ESANinstacron:ESANenghttps://revistas.esan.edu.pe/index.php/jefas/article/view/141/111Copyright (c) 2016 Journal of Economics, Finance and Administrative Sciencehttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessoai:ojs.pkp.sfu.ca:article/1412021-08-17T23:25:53Z
dc.title.none.fl_str_mv Corporate governance characteristics and valuation: Inferences from quantile regression
title Corporate governance characteristics and valuation: Inferences from quantile regression
spellingShingle Corporate governance characteristics and valuation: Inferences from quantile regression
Shawtari, Fekri Ali
Desempeno
Gobierno corporativo
OLS
Regresión de cuantiles
title_short Corporate governance characteristics and valuation: Inferences from quantile regression
title_full Corporate governance characteristics and valuation: Inferences from quantile regression
title_fullStr Corporate governance characteristics and valuation: Inferences from quantile regression
title_full_unstemmed Corporate governance characteristics and valuation: Inferences from quantile regression
title_sort Corporate governance characteristics and valuation: Inferences from quantile regression
dc.creator.none.fl_str_mv Shawtari, Fekri Ali
Abdelnabi Salem, Milad
Iqbal Hussain, Hafezali
Alaeddin, Omar
Bin Thabit, Omer
author Shawtari, Fekri Ali
author_facet Shawtari, Fekri Ali
Abdelnabi Salem, Milad
Iqbal Hussain, Hafezali
Alaeddin, Omar
Bin Thabit, Omer
author_role author
author2 Abdelnabi Salem, Milad
Iqbal Hussain, Hafezali
Alaeddin, Omar
Bin Thabit, Omer
author2_role author
author
author
author
dc.subject.none.fl_str_mv Desempeno
Gobierno corporativo
OLS
Regresión de cuantiles
topic Desempeno
Gobierno corporativo
OLS
Regresión de cuantiles
description Prior literature on corporate governance and performance provides mixed evidence on the impact of various corporate governance measures on performance indicators. However, most of literatures adopt the Ordinary Least Square (OLS). This method is based on the central tendency, which may not appropriately represent the reality in cases where the dependent variable ranges between upper and lower values and hence the relationship may not be homogenous across different percentiles of the dependent variables. A variable having a positive impact based on the central tendency for firms may not be the case for the firms in the upper or lower bounds. Thus, estimating the means using OLS may not reflect and represent the heterogeneity in the estimated relationship. Therefore, quantile regression estimates the relationship at any point conditional on the distribution of dependent variable. This would enable us to generate various estimated coefficient at certain quantile of dependent variable. Therefore, the objective of the study is twofold. First, this study aims to investigate the relationship between corporate governance and performance using OLS. Second,this work further explores the impact of corporate governance mechanisms on performance using quantile regression so as to compare and to shed light on whether there is heterogeneity in the influence of these variables on the performance of listed companies across quantiles. The results of the study provide evidence that quantile approach shows inconsistency in the result with OLS and hence indicating the impact depends on the scale size. This theoretically provides further support that OLS may represent a poor estimation approach for the reality of firms. Doi: https://​doi.org/10.1016/j.jefas.2016.06.004
publishDate 2016
dc.date.none.fl_str_mv 2016-12-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/141
url https://revistas.esan.edu.pe/index.php/jefas/article/view/141
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/141/111
dc.rights.none.fl_str_mv Copyright (c) 2016 Journal of Economics, Finance and Administrative Science
https://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 Journal of Economics, Finance and Administrative Science
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad ESAN
publisher.none.fl_str_mv Universidad ESAN
dc.source.none.fl_str_mv Journal of Economics, Finance and Administrative Science; Vol. 21 No. 41 (2016): July - December; 81-88
Journal of Economics, Finance and Administrative Science; Vol. 21 Núm. 41 (2016): July - December; 81-88
2218-0648
2077-1886
reponame:Revistas - Universidad ESAN
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str Revistas - Universidad ESAN
collection Revistas - Universidad ESAN
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1847512519676002304
score 12.63363
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).