Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome

Descripción del Articulo

Introduction: the presence or absence of ST elevation determines the prognostic and therapeutic approach to acute coronary syndrome. Objective: to predict, using neural networks, the presence or absence of ST-elevation according to symptoms and signs of acute coronary syndrome. Material and methods:...

Descripción completa

Detalles Bibliográficos
Autor: Guevara Tirado, Alberto
Formato: artículo
Fecha de Publicación:2025
Institución:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
Repositorio:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
Lenguaje:español
OAI Identifier:oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/2667
Enlace del recurso:https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2667
Nivel de acceso:acceso abierto
Materia:Síndrome Coronario Agudo
Infarto del Miocardio con Elevación del ST
Infarto del Miocardio sin Elevación del ST
Urgencias Médicas
Redes Neurales de la Computación
Acute Coronary Syndrome
ST Elevation Myocardial Infarction
Non-ST Elevated Myocardial Infarction
Emergencies; Neural Networks
Neural Networks, Computer
id REVCMH_4608e627eb25d7181913f91b9eeaf9e0
oai_identifier_str oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/2667
network_acronym_str REVCMH
network_name_str Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
repository_id_str
dc.title.none.fl_str_mv Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome
Red neuronal artificial para predecir supradesnivel-ST según síntomas y signos de síndrome coronario agudo
title Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome
spellingShingle Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome
Guevara Tirado, Alberto
Síndrome Coronario Agudo
Infarto del Miocardio con Elevación del ST
Infarto del Miocardio sin Elevación del ST
Urgencias Médicas
Redes Neurales de la Computación
Acute Coronary Syndrome
ST Elevation Myocardial Infarction
Non-ST Elevated Myocardial Infarction
Emergencies; Neural Networks
Neural Networks, Computer
title_short Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome
title_full Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome
title_fullStr Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome
title_full_unstemmed Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome
title_sort Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome
dc.creator.none.fl_str_mv Guevara Tirado, Alberto
author Guevara Tirado, Alberto
author_facet Guevara Tirado, Alberto
author_role author
dc.subject.none.fl_str_mv Síndrome Coronario Agudo
Infarto del Miocardio con Elevación del ST
Infarto del Miocardio sin Elevación del ST
Urgencias Médicas
Redes Neurales de la Computación
Acute Coronary Syndrome
ST Elevation Myocardial Infarction
Non-ST Elevated Myocardial Infarction
Emergencies; Neural Networks
Neural Networks, Computer
topic Síndrome Coronario Agudo
Infarto del Miocardio con Elevación del ST
Infarto del Miocardio sin Elevación del ST
Urgencias Médicas
Redes Neurales de la Computación
Acute Coronary Syndrome
ST Elevation Myocardial Infarction
Non-ST Elevated Myocardial Infarction
Emergencies; Neural Networks
Neural Networks, Computer
description Introduction: the presence or absence of ST elevation determines the prognostic and therapeutic approach to acute coronary syndrome. Objective: to predict, using neural networks, the presence or absence of ST-elevation according to symptoms and signs of acute coronary syndrome. Material and methods: analytical and cross-sectional study based on a database of 106 patients admitted for acute coronary syndrome in a Peruvian hospital. A series of symptoms and signs were analyzed prior to performing the electrocardiogram. Multilayer perceptron-type neural networks were used, from which the classification table of correct forecasts, the predictive capacity of the model, as well as the normalized importance of the predictor variables were evaluated. Results: The neural network had overall percentages of correct predictions in training and testing of 93.40% and 93.30%, respectively. The area under the curve was 0.982, indicating that the model has an outstanding predictive capacity. In the training stage, the percentages of correct predictions were 94% and 92.30% to rule out and detect ST elevation, respectively. In the test, the percentage of correct predictions to rule out and detect ST-elevation was 90% and 100%, respectively. The most influential predictor variables were heart rate, being a smoker, neck pain, nausea, and diaphoresis. Conclusions: the multilayer perceptron-type neural network was efficient for predicting ST-segment elevation according to symptoms and signs of patients admitted to the emergency room due to acute coronary syndrome.
publishDate 2025
dc.date.none.fl_str_mv 2025-08-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2667
10.35434/rcmhnaaa.2025.182.2667
url https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2667
identifier_str_mv 10.35434/rcmhnaaa.2025.182.2667
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2667/1090
dc.rights.none.fl_str_mv Derechos de autor 2025 Alberto Guevara Tirado
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2025 Alberto Guevara Tirado
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo
publisher.none.fl_str_mv Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo
dc.source.none.fl_str_mv Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 No. 2 (2025): Early Publication; e2667
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 Núm. 2 (2025): Publicación Anticipada; e2667
2227-4731
2225-5109
10.35434/rcmhnaaa.2025.182
reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instacron:HNAAA
instname_str Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
instacron_str HNAAA
institution HNAAA
reponame_str Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
collection Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1843263934486806528
spelling Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary SyndromeRed neuronal artificial para predecir supradesnivel-ST según síntomas y signos de síndrome coronario agudoGuevara Tirado, AlbertoSíndrome Coronario AgudoInfarto del Miocardio con Elevación del STInfarto del Miocardio sin Elevación del STUrgencias MédicasRedes Neurales de la ComputaciónAcute Coronary SyndromeST Elevation Myocardial InfarctionNon-ST Elevated Myocardial InfarctionEmergencies; Neural NetworksNeural Networks, Computer Introduction: the presence or absence of ST elevation determines the prognostic and therapeutic approach to acute coronary syndrome. Objective: to predict, using neural networks, the presence or absence of ST-elevation according to symptoms and signs of acute coronary syndrome. Material and methods: analytical and cross-sectional study based on a database of 106 patients admitted for acute coronary syndrome in a Peruvian hospital. A series of symptoms and signs were analyzed prior to performing the electrocardiogram. Multilayer perceptron-type neural networks were used, from which the classification table of correct forecasts, the predictive capacity of the model, as well as the normalized importance of the predictor variables were evaluated. Results: The neural network had overall percentages of correct predictions in training and testing of 93.40% and 93.30%, respectively. The area under the curve was 0.982, indicating that the model has an outstanding predictive capacity. In the training stage, the percentages of correct predictions were 94% and 92.30% to rule out and detect ST elevation, respectively. In the test, the percentage of correct predictions to rule out and detect ST-elevation was 90% and 100%, respectively. The most influential predictor variables were heart rate, being a smoker, neck pain, nausea, and diaphoresis. Conclusions: the multilayer perceptron-type neural network was efficient for predicting ST-segment elevation according to symptoms and signs of patients admitted to the emergency room due to acute coronary syndrome.Introducción: la presencia o ausencia de supradesnivel-ST determina el enfoque pronóstico y terapéutico del síndrome coronario agudo. Objetivo: predecir mediante redes neuronales la presencia o ausencia de supradesnivel-ST según síntomas y signos del síndrome coronario agudo. Material y métodos: estudio analítico y transversal a partir de una base de datos de 106 pacientes ingresados por síndrome coronario agudo en un hospital peruano. Se analizó una serie de síntomas y signos previos a la realización del electrocardiograma. Se utilizó redes neuronales tipo perceptrón multicapa, del cual se evaluó la tabla de clasificación de pronósticos correctos, la capacidad predictiva del modelo, así como la importancia normalizada de las variables predictoras. Resultados: La red neuronal tuvo porcentajes globales de pronósticos correctos en el entrenamiento y prueba de 93,40% y 93,30%, respectivamente. El área bajo la curva fue 0,982, indicando que el modelo tiene una capacidad predictiva sobresaliente. En la etapa de entrenamiento, los porcentajes de pronósticos correctos fueron 94% y 92,30% para descartar y detectar supradesnivel ST, respectivamente. En la prueba, el porcentaje de pronósticos correctos para descartar y detectar supradesnivel-ST fue 90% y 100%, respectivamente. Las variables predictoras de mayor influencia fueron la frecuencia cardiaca, ser fumador, dolor de cuello, náuseas, diaforesis.  Conclusiones: la red neuronal tipo perceptrón multicapa, fue eficiente para la predicción de elevación del segmento-ST según síntomas y signos de pacientes ingresados a emergencias por síndrome coronario agudo.Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo2025-08-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/266710.35434/rcmhnaaa.2025.182.2667Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 No. 2 (2025): Early Publication; e2667Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 Núm. 2 (2025): Publicación Anticipada; e26672227-47312225-510910.35434/rcmhnaaa.2025.182reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstacron:HNAAAspahttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2667/1090Derechos de autor 2025 Alberto Guevara Tiradohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/26672025-07-07T16:25:44Z
score 13.461011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).