Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome
Descripción del Articulo
Introduction: the presence or absence of ST elevation determines the prognostic and therapeutic approach to acute coronary syndrome. Objective: to predict, using neural networks, the presence or absence of ST-elevation according to symptoms and signs of acute coronary syndrome. Material and methods:...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2025 |
Institución: | Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
Repositorio: | Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
Lenguaje: | español |
OAI Identifier: | oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/2667 |
Enlace del recurso: | https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2667 |
Nivel de acceso: | acceso abierto |
Materia: | Síndrome Coronario Agudo Infarto del Miocardio con Elevación del ST Infarto del Miocardio sin Elevación del ST Urgencias Médicas Redes Neurales de la Computación Acute Coronary Syndrome ST Elevation Myocardial Infarction Non-ST Elevated Myocardial Infarction Emergencies; Neural Networks Neural Networks, Computer |
id |
REVCMH_4608e627eb25d7181913f91b9eeaf9e0 |
---|---|
oai_identifier_str |
oai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/2667 |
network_acronym_str |
REVCMH |
network_name_str |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
repository_id_str |
|
dc.title.none.fl_str_mv |
Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome Red neuronal artificial para predecir supradesnivel-ST según síntomas y signos de síndrome coronario agudo |
title |
Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome |
spellingShingle |
Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome Guevara Tirado, Alberto Síndrome Coronario Agudo Infarto del Miocardio con Elevación del ST Infarto del Miocardio sin Elevación del ST Urgencias Médicas Redes Neurales de la Computación Acute Coronary Syndrome ST Elevation Myocardial Infarction Non-ST Elevated Myocardial Infarction Emergencies; Neural Networks Neural Networks, Computer |
title_short |
Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome |
title_full |
Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome |
title_fullStr |
Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome |
title_full_unstemmed |
Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome |
title_sort |
Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary Syndrome |
dc.creator.none.fl_str_mv |
Guevara Tirado, Alberto |
author |
Guevara Tirado, Alberto |
author_facet |
Guevara Tirado, Alberto |
author_role |
author |
dc.subject.none.fl_str_mv |
Síndrome Coronario Agudo Infarto del Miocardio con Elevación del ST Infarto del Miocardio sin Elevación del ST Urgencias Médicas Redes Neurales de la Computación Acute Coronary Syndrome ST Elevation Myocardial Infarction Non-ST Elevated Myocardial Infarction Emergencies; Neural Networks Neural Networks, Computer |
topic |
Síndrome Coronario Agudo Infarto del Miocardio con Elevación del ST Infarto del Miocardio sin Elevación del ST Urgencias Médicas Redes Neurales de la Computación Acute Coronary Syndrome ST Elevation Myocardial Infarction Non-ST Elevated Myocardial Infarction Emergencies; Neural Networks Neural Networks, Computer |
description |
Introduction: the presence or absence of ST elevation determines the prognostic and therapeutic approach to acute coronary syndrome. Objective: to predict, using neural networks, the presence or absence of ST-elevation according to symptoms and signs of acute coronary syndrome. Material and methods: analytical and cross-sectional study based on a database of 106 patients admitted for acute coronary syndrome in a Peruvian hospital. A series of symptoms and signs were analyzed prior to performing the electrocardiogram. Multilayer perceptron-type neural networks were used, from which the classification table of correct forecasts, the predictive capacity of the model, as well as the normalized importance of the predictor variables were evaluated. Results: The neural network had overall percentages of correct predictions in training and testing of 93.40% and 93.30%, respectively. The area under the curve was 0.982, indicating that the model has an outstanding predictive capacity. In the training stage, the percentages of correct predictions were 94% and 92.30% to rule out and detect ST elevation, respectively. In the test, the percentage of correct predictions to rule out and detect ST-elevation was 90% and 100%, respectively. The most influential predictor variables were heart rate, being a smoker, neck pain, nausea, and diaphoresis. Conclusions: the multilayer perceptron-type neural network was efficient for predicting ST-segment elevation according to symptoms and signs of patients admitted to the emergency room due to acute coronary syndrome. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-08-31 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2667 10.35434/rcmhnaaa.2025.182.2667 |
url |
https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2667 |
identifier_str_mv |
10.35434/rcmhnaaa.2025.182.2667 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2667/1090 |
dc.rights.none.fl_str_mv |
Derechos de autor 2025 Alberto Guevara Tirado https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2025 Alberto Guevara Tirado https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo |
publisher.none.fl_str_mv |
Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo |
dc.source.none.fl_str_mv |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 No. 2 (2025): Early Publication; e2667 Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 Núm. 2 (2025): Publicación Anticipada; e2667 2227-4731 2225-5109 10.35434/rcmhnaaa.2025.182 reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo instname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo instacron:HNAAA |
instname_str |
Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
instacron_str |
HNAAA |
institution |
HNAAA |
reponame_str |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
collection |
Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1843263934486806528 |
spelling |
Artificial Neural Network to Predict ST-Segment Elevation Based on Symptoms and Signs of Acute Coronary SyndromeRed neuronal artificial para predecir supradesnivel-ST según síntomas y signos de síndrome coronario agudoGuevara Tirado, AlbertoSíndrome Coronario AgudoInfarto del Miocardio con Elevación del STInfarto del Miocardio sin Elevación del STUrgencias MédicasRedes Neurales de la ComputaciónAcute Coronary SyndromeST Elevation Myocardial InfarctionNon-ST Elevated Myocardial InfarctionEmergencies; Neural NetworksNeural Networks, Computer Introduction: the presence or absence of ST elevation determines the prognostic and therapeutic approach to acute coronary syndrome. Objective: to predict, using neural networks, the presence or absence of ST-elevation according to symptoms and signs of acute coronary syndrome. Material and methods: analytical and cross-sectional study based on a database of 106 patients admitted for acute coronary syndrome in a Peruvian hospital. A series of symptoms and signs were analyzed prior to performing the electrocardiogram. Multilayer perceptron-type neural networks were used, from which the classification table of correct forecasts, the predictive capacity of the model, as well as the normalized importance of the predictor variables were evaluated. Results: The neural network had overall percentages of correct predictions in training and testing of 93.40% and 93.30%, respectively. The area under the curve was 0.982, indicating that the model has an outstanding predictive capacity. In the training stage, the percentages of correct predictions were 94% and 92.30% to rule out and detect ST elevation, respectively. In the test, the percentage of correct predictions to rule out and detect ST-elevation was 90% and 100%, respectively. The most influential predictor variables were heart rate, being a smoker, neck pain, nausea, and diaphoresis. Conclusions: the multilayer perceptron-type neural network was efficient for predicting ST-segment elevation according to symptoms and signs of patients admitted to the emergency room due to acute coronary syndrome.Introducción: la presencia o ausencia de supradesnivel-ST determina el enfoque pronóstico y terapéutico del síndrome coronario agudo. Objetivo: predecir mediante redes neuronales la presencia o ausencia de supradesnivel-ST según síntomas y signos del síndrome coronario agudo. Material y métodos: estudio analítico y transversal a partir de una base de datos de 106 pacientes ingresados por síndrome coronario agudo en un hospital peruano. Se analizó una serie de síntomas y signos previos a la realización del electrocardiograma. Se utilizó redes neuronales tipo perceptrón multicapa, del cual se evaluó la tabla de clasificación de pronósticos correctos, la capacidad predictiva del modelo, así como la importancia normalizada de las variables predictoras. Resultados: La red neuronal tuvo porcentajes globales de pronósticos correctos en el entrenamiento y prueba de 93,40% y 93,30%, respectivamente. El área bajo la curva fue 0,982, indicando que el modelo tiene una capacidad predictiva sobresaliente. En la etapa de entrenamiento, los porcentajes de pronósticos correctos fueron 94% y 92,30% para descartar y detectar supradesnivel ST, respectivamente. En la prueba, el porcentaje de pronósticos correctos para descartar y detectar supradesnivel-ST fue 90% y 100%, respectivamente. Las variables predictoras de mayor influencia fueron la frecuencia cardiaca, ser fumador, dolor de cuello, náuseas, diaforesis. Conclusiones: la red neuronal tipo perceptrón multicapa, fue eficiente para la predicción de elevación del segmento-ST según síntomas y signos de pacientes ingresados a emergencias por síndrome coronario agudo.Cuerpo Médico del Hospital Nacional Almanzor Aguinaga Asenjo2025-08-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/266710.35434/rcmhnaaa.2025.182.2667Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 No. 2 (2025): Early Publication; e2667Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo; Vol. 18 Núm. 2 (2025): Publicación Anticipada; e26672227-47312225-510910.35434/rcmhnaaa.2025.182reponame:Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstname:Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjoinstacron:HNAAAspahttps://cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/2667/1090Derechos de autor 2025 Alberto Guevara Tiradohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:cmhnaaa_ojs_cmhnaaa.cmhnaaa.org.pe:article/26672025-07-07T16:25:44Z |
score |
13.461011 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).