Understanding the effect of process-induced porosity on the localized corrosion 316L stainless steel manufactured by laser powder bed fusion

Descripción del Articulo

The wide adoption of Laser Powder Bed Fusion (LPBF) in additive manufacturing has led to the need for a comprehensive understanding of the corrosion behavior of LPBF-fabricated components [1]. This thesis focuses on the pitting corrosion behavior of 316L stainless steel, emphasizing the influence of...

Descripción completa

Detalles Bibliográficos
Autor: Calizaya Chipana, Mariela Tabata
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Superintendencia Nacional de Educación Superior Universitaria
Repositorio:Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
Lenguaje:inglés
OAI Identifier:oai:renati.sunedu.gob.pe:renati/7041
Enlace del recurso:https://renati.sunedu.gob.pe/handle/sunedu/3484789
Nivel de acceso:acceso abierto
Materia:Fabricación aditiva
Fusión de polvo en cama con láser
Corrosión por picadura
Porosidad
Polarización potenciodinámica cíclica
Microgrietas
Cavidades de gas
https://purl.org/pe-repo/ocde/ford#2.04.01
Descripción
Sumario:The wide adoption of Laser Powder Bed Fusion (LPBF) in additive manufacturing has led to the need for a comprehensive understanding of the corrosion behavior of LPBF-fabricated components [1]. This thesis focuses on the pitting corrosion behavior of 316L stainless steel, emphasizing the influence of process-induced porosity. The impact of various defects on pitting corrosion behavior was explored through a series of experimental investigations using cyclic potentiodynamic polarization in a 0.6M NaCl solution. The study revealed that LPBF 316L SS exhibited superior pitting resistance compared to its wrought counterpart [2]–[7], even in the presence of manufacturing defects. Interestingly, despite their larger size and open porosity, gas voids were not the preferred sites for pitting propagation. The presence of these voids did not accelerate the accumulation of metal cations, thus diminishing their impact on pitting corrosion. Instead, other defect types, such as lack of fusion (LOF) porous and microcracks, demonstrated a preference for pitting initiation and propagation. However, the size of LOF did not significantly affect the pitting resistance, suggesting other factors play a more substantial role. Notably, the presence of multiple defects significantly decreased the pitting potentials. Further research is needed to explore this underlying mechanism. These findings provide valuable insights into the behavior of different defects and their role in pitting corrosion, contributing to developing strategies for enhancing the corrosion resistance of LPBF-fabricated components.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).