Formas normales y estabilidad de soluciones de equilibrio en sistemas Hamiltonianos con parte lineal no diagonalizable

Descripción del Articulo

Analiza las formas normales y estabilidad de soluciones de equilibrio de un sistema Hamiltoniano con dos grados de libertad cuando la matriz asociada a la parte lineal no es diagonalizable. Presentamos resultados de estabilidad e inestabilidad, los cuales han sido obtenidos vía el método de Liapunov...

Descripción completa

Detalles Bibliográficos
Autor: Espejo Rimapa, Dílver Elías
Formato: tesis de maestría
Fecha de Publicación:2018
Institución:Superintendencia Nacional de Educación Superior Universitaria
Repositorio:Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
Lenguaje:español
OAI Identifier:oai:renati.sunedu.gob.pe:renati/2068
Enlace del recurso:http://renati.sunedu.gob.pe/handle/sunedu/1593644
Nivel de acceso:acceso abierto
Materia:Espacios simplécticos
Sistemas hamiltonianos
Formas normales (Matemáticas)
Estabilidad, Teoría de (Matemáticas)
https://purl.org/pe-repo/ocde/ford#1.00.00
https://purl.org/pe-repo/ocde/ford#1.01.02
id RENATI_60079b2adbb7129129dbca63719d657d
oai_identifier_str oai:renati.sunedu.gob.pe:renati/2068
network_acronym_str RENATI
network_name_str Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
repository_id_str
dc.title.es_PE.fl_str_mv Formas normales y estabilidad de soluciones de equilibrio en sistemas Hamiltonianos con parte lineal no diagonalizable
title Formas normales y estabilidad de soluciones de equilibrio en sistemas Hamiltonianos con parte lineal no diagonalizable
spellingShingle Formas normales y estabilidad de soluciones de equilibrio en sistemas Hamiltonianos con parte lineal no diagonalizable
Espejo Rimapa, Dílver Elías
Espacios simplécticos
Sistemas hamiltonianos
Formas normales (Matemáticas)
Estabilidad, Teoría de (Matemáticas)
https://purl.org/pe-repo/ocde/ford#1.00.00
https://purl.org/pe-repo/ocde/ford#1.01.02
title_short Formas normales y estabilidad de soluciones de equilibrio en sistemas Hamiltonianos con parte lineal no diagonalizable
title_full Formas normales y estabilidad de soluciones de equilibrio en sistemas Hamiltonianos con parte lineal no diagonalizable
title_fullStr Formas normales y estabilidad de soluciones de equilibrio en sistemas Hamiltonianos con parte lineal no diagonalizable
title_full_unstemmed Formas normales y estabilidad de soluciones de equilibrio en sistemas Hamiltonianos con parte lineal no diagonalizable
title_sort Formas normales y estabilidad de soluciones de equilibrio en sistemas Hamiltonianos con parte lineal no diagonalizable
author Espejo Rimapa, Dílver Elías
author_facet Espejo Rimapa, Dílver Elías
author_role author
dc.contributor.advisor.fl_str_mv Vidal Díaz, Claudio
Crespo Cutillas, Francisco
dc.contributor.author.fl_str_mv Espejo Rimapa, Dílver Elías
dc.subject.es_PE.fl_str_mv Espacios simplécticos
Sistemas hamiltonianos
Formas normales (Matemáticas)
Estabilidad, Teoría de (Matemáticas)
topic Espacios simplécticos
Sistemas hamiltonianos
Formas normales (Matemáticas)
Estabilidad, Teoría de (Matemáticas)
https://purl.org/pe-repo/ocde/ford#1.00.00
https://purl.org/pe-repo/ocde/ford#1.01.02
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.00.00
https://purl.org/pe-repo/ocde/ford#1.01.02
description Analiza las formas normales y estabilidad de soluciones de equilibrio de un sistema Hamiltoniano con dos grados de libertad cuando la matriz asociada a la parte lineal no es diagonalizable. Presentamos resultados de estabilidad e inestabilidad, los cuales han sido obtenidos vía el método de Liapunov, siendo previamente utilizado el proceso de normalización no lineal de Gustavson y/o el método de Lie o Deprit. Además, los resultados obtenidos en el caso dos grados de libertad son extendidos al caso tres grados de libertad en algunas situaciones. Como aplicación, en el caso dos grados de libertad, estudiamos el problema restringido circular de tres cuerpos y el problema lunar de Hill, ambos en el caso planar. Como aplicación en el caso tres grados de libertad estudiamos el problema del satélite y el problema restringido circular de tres cuerpos, ambos en el caso espacial.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2021-02-02T15:10:48Z
dc.date.available.none.fl_str_mv 2021-02-02T15:10:48Z
dc.date.issued.fl_str_mv 2018
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://renati.sunedu.gob.pe/handle/sunedu/1593644
url http://renati.sunedu.gob.pe/handle/sunedu/1593644
dc.language.iso.es_PE.fl_str_mv spa
language spa
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/deed.es
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/deed.es
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad del Bío-Bío
dc.publisher.country.es_PE.fl_str_mv CL
dc.source.es_PE.fl_str_mv Superintendencia Nacional de Educación Superior Universitaria - SUNEDU
dc.source.none.fl_str_mv reponame:Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
instname:Superintendencia Nacional de Educación Superior Universitaria
instacron:SUNEDU
instname_str Superintendencia Nacional de Educación Superior Universitaria
instacron_str SUNEDU
institution SUNEDU
reponame_str Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
collection Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATI
dc.source.uri.es_PE.fl_str_mv Registro Nacional de Trabajos de Investigación - RENATI
bitstream.url.fl_str_mv https://renati.sunedu.gob.pe/bitstream/renati/2068/1/EspejoRimapaDE.pdf
https://renati.sunedu.gob.pe/bitstream/renati/2068/2/Autorizacion.pdf
https://renati.sunedu.gob.pe/bitstream/renati/2068/3/license.txt
https://renati.sunedu.gob.pe/bitstream/renati/2068/4/EspejoRimapaDE.pdf.txt
https://renati.sunedu.gob.pe/bitstream/renati/2068/6/Autorizacion.pdf.txt
https://renati.sunedu.gob.pe/bitstream/renati/2068/5/EspejoRimapaDE.pdf.jpg
https://renati.sunedu.gob.pe/bitstream/renati/2068/7/Autorizacion.pdf.jpg
bitstream.checksum.fl_str_mv f52065043288a02b9c187b147497a5b2
8908448db5ed3c58fc7bcc0bc6e57a57
8a4605be74aa9ea9d79846c1fba20a33
c09c16179fd6982f15d35167fba47ed8
e1c06d85ae7b8b032bef47e42e4c08f9
2a67c37a6c3cbc91d885804625361fd0
0e3a3943cac55040cfda0dc5e6393650
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Registro Nacional de Trabajos de Investigación
repository.mail.fl_str_mv renati@sunedu.gob.pe
_version_ 1816177365576843264
spelling Vidal Díaz, ClaudioCrespo Cutillas, FranciscoEspejo Rimapa, Dílver Elías2021-02-02T15:10:48Z2021-02-02T15:10:48Z2018http://renati.sunedu.gob.pe/handle/sunedu/1593644Analiza las formas normales y estabilidad de soluciones de equilibrio de un sistema Hamiltoniano con dos grados de libertad cuando la matriz asociada a la parte lineal no es diagonalizable. Presentamos resultados de estabilidad e inestabilidad, los cuales han sido obtenidos vía el método de Liapunov, siendo previamente utilizado el proceso de normalización no lineal de Gustavson y/o el método de Lie o Deprit. Además, los resultados obtenidos en el caso dos grados de libertad son extendidos al caso tres grados de libertad en algunas situaciones. Como aplicación, en el caso dos grados de libertad, estudiamos el problema restringido circular de tres cuerpos y el problema lunar de Hill, ambos en el caso planar. Como aplicación en el caso tres grados de libertad estudiamos el problema del satélite y el problema restringido circular de tres cuerpos, ambos en el caso espacial.Chile. Universidad del Bío-Bío. Beca Docenteapplication/pdfspaUniversidad del Bío-BíoCLinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/deed.esSuperintendencia Nacional de Educación Superior Universitaria - SUNEDURegistro Nacional de Trabajos de Investigación - RENATIreponame:Registro Nacional de Trabajos conducentes a Grados y Títulos - RENATIinstname:Superintendencia Nacional de Educación Superior Universitariainstacron:SUNEDUEspacios simplécticosSistemas hamiltonianosFormas normales (Matemáticas)Estabilidad, Teoría de (Matemáticas)https://purl.org/pe-repo/ocde/ford#1.00.00https://purl.org/pe-repo/ocde/ford#1.01.02Formas normales y estabilidad de soluciones de equilibrio en sistemas Hamiltonianos con parte lineal no diagonalizableinfo:eu-repo/semantics/masterThesisUniversidad del Bío-Bío. Facultad de Ciencias. Departamento de Estadística y Departamento de MatemáticaMatemática con mención en Matemática AplicadaMagíster en Matemática con mención en Matemática Aplicadahttp://purl.org/pe-repo/renati/level#maestrohttps://orcid.org/0000-0002-1630-0898https://orcid.org/0000-0002-5930-852343726045Fernandes, Antonio CarlosCarrasco Olivera, Dantehttp://purl.org/pe-repo/renati/type#tesisORIGINALEspejoRimapaDE.pdfEspejoRimapaDE.pdfTesisapplication/pdf3034929https://renati.sunedu.gob.pe/bitstream/renati/2068/1/EspejoRimapaDE.pdff52065043288a02b9c187b147497a5b2MD51Autorizacion.pdfAutorizacion.pdfAutorización del registroapplication/pdf690676https://renati.sunedu.gob.pe/bitstream/renati/2068/2/Autorizacion.pdf8908448db5ed3c58fc7bcc0bc6e57a57MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://renati.sunedu.gob.pe/bitstream/renati/2068/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53TEXTEspejoRimapaDE.pdf.txtEspejoRimapaDE.pdf.txtExtracted texttext/plain360113https://renati.sunedu.gob.pe/bitstream/renati/2068/4/EspejoRimapaDE.pdf.txtc09c16179fd6982f15d35167fba47ed8MD54Autorizacion.pdf.txtAutorizacion.pdf.txtExtracted texttext/plain2https://renati.sunedu.gob.pe/bitstream/renati/2068/6/Autorizacion.pdf.txte1c06d85ae7b8b032bef47e42e4c08f9MD56THUMBNAILEspejoRimapaDE.pdf.jpgEspejoRimapaDE.pdf.jpgGenerated Thumbnailimage/jpeg1486https://renati.sunedu.gob.pe/bitstream/renati/2068/5/EspejoRimapaDE.pdf.jpg2a67c37a6c3cbc91d885804625361fd0MD55Autorizacion.pdf.jpgAutorizacion.pdf.jpgGenerated Thumbnailimage/jpeg1616https://renati.sunedu.gob.pe/bitstream/renati/2068/7/Autorizacion.pdf.jpg0e3a3943cac55040cfda0dc5e6393650MD57renati/2068oai:renati.sunedu.gob.pe:renati/20682021-02-03 03:01:44.586Registro Nacional de Trabajos de Investigaciónrenati@sunedu.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.846826
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).