Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus

Descripción del Articulo

People with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automa...

Descripción completa

Detalles Bibliográficos
Autor: Huiza Pereyra, Eric Raphael
Formato: tesis de maestría
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/16906
Enlace del recurso:http://hdl.handle.net/20.500.12404/16906
Nivel de acceso:acceso abierto
Materia:Redes neuronales (Computación)
Algoritmos computacionales
Reconocimiento óptico de patrones
https://purl.org/pe-repo/ocde/ford#1.02.00
id PUCP_efc2122faeb97307dcf96a8f5cb2dbf5
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/16906
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
title Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
spellingShingle Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
Huiza Pereyra, Eric Raphael
Redes neuronales (Computación)
Algoritmos computacionales
Reconocimiento óptico de patrones
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
title_full Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
title_fullStr Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
title_full_unstemmed Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
title_sort Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
author Huiza Pereyra, Eric Raphael
author_facet Huiza Pereyra, Eric Raphael
author_role author
dc.contributor.advisor.fl_str_mv Olivares Poggi, Cesar Augusto
dc.contributor.author.fl_str_mv Huiza Pereyra, Eric Raphael
dc.subject.es_ES.fl_str_mv Redes neuronales (Computación)
Algoritmos computacionales
Reconocimiento óptico de patrones
topic Redes neuronales (Computación)
Algoritmos computacionales
Reconocimiento óptico de patrones
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
description People with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automatic video annotation applied to a non-annotated Peru-vian Signs Language (PSL) corpus along with a novel method for a progressive detection of PSL elements (nSDm). We produced a set of video annotations in-dicating signs appearances for a small set of nouns and numbers along with a labeled PSL dataset (PSL dataset). A model obtained after ensemble a 2D CNN trained with movement patterns extracted from the PSL dataset using Lucas Kanade Opticalflow, and a RNN with LSTM cells trained with raw RGB frames extracted from the PSL dataset reporting state-of-art results over the PSL dataset on signs classification tasks in terms of AUC, Precision and Recall.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-09-01T00:12:05Z
dc.date.available.none.fl_str_mv 2020-09-01T00:12:05Z
dc.date.created.none.fl_str_mv 2020
dc.date.issued.fl_str_mv 2020-08-31
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/16906
url http://hdl.handle.net/20.500.12404/16906
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/0bfba6cc-a78f-45f6-aa1e-59fc128789b2/download
https://tesis.pucp.edu.pe/bitstreams/780691db-687d-4b51-841c-0145371390e8/download
https://tesis.pucp.edu.pe/bitstreams/5b724f3a-997d-46a9-8b6b-4cfbd227970d/download
https://tesis.pucp.edu.pe/bitstreams/bb0dd851-724d-48db-bce6-44d0df37385b/download
https://tesis.pucp.edu.pe/bitstreams/590da006-e191-45d5-b989-b1ef17d25e7e/download
https://tesis.pucp.edu.pe/bitstreams/7160489a-82aa-4c52-85ee-7b225d343681/download
bitstream.checksum.fl_str_mv 64e0ad9d98c3ed1e8d8ed5052da705c7
5a4ffbc01f1b5eb70a835dac0d501661
8a4605be74aa9ea9d79846c1fba20a33
55457c9a7748adbe7f01f785fe7bbb13
a541abebfd82d9dc67b18f12644321d0
1b46d1f0e57619f56dac3158b4551e85
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1834736815621275648
spelling Olivares Poggi, Cesar AugustoHuiza Pereyra, Eric Raphael2020-09-01T00:12:05Z2020-09-01T00:12:05Z20202020-08-31http://hdl.handle.net/20.500.12404/16906People with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automatic video annotation applied to a non-annotated Peru-vian Signs Language (PSL) corpus along with a novel method for a progressive detection of PSL elements (nSDm). We produced a set of video annotations in-dicating signs appearances for a small set of nouns and numbers along with a labeled PSL dataset (PSL dataset). A model obtained after ensemble a 2D CNN trained with movement patterns extracted from the PSL dataset using Lucas Kanade Opticalflow, and a RNN with LSTM cells trained with raw RGB frames extracted from the PSL dataset reporting state-of-art results over the PSL dataset on signs classification tasks in terms of AUC, Precision and Recall.Trabajo de investigaciónengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Redes neuronales (Computación)Algoritmos computacionalesReconocimiento óptico de patroneshttps://purl.org/pe-repo/ocde/ford#1.02.00Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpusinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en InformáticaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoInformática09342040611077https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#trabajoDeInvestigacionORIGINALHUIZA_PEREYRA_ERIC_TALKING_SIGNS_SIMPLE.pdfHUIZA_PEREYRA_ERIC_TALKING_SIGNS_SIMPLE.pdfTexto completoapplication/pdf960440https://tesis.pucp.edu.pe/bitstreams/0bfba6cc-a78f-45f6-aa1e-59fc128789b2/download64e0ad9d98c3ed1e8d8ed5052da705c7MD55trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://tesis.pucp.edu.pe/bitstreams/780691db-687d-4b51-841c-0145371390e8/download5a4ffbc01f1b5eb70a835dac0d501661MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/5b724f3a-997d-46a9-8b6b-4cfbd227970d/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILHUIZA_PEREYRA_ERIC_TALKING_SIGNS_SIMPLE.pngHUIZA_PEREYRA_ERIC_TALKING_SIGNS_SIMPLE.pngIM Thumbnailimage/png111534https://tesis.pucp.edu.pe/bitstreams/bb0dd851-724d-48db-bce6-44d0df37385b/download55457c9a7748adbe7f01f785fe7bbb13MD56falseAnonymousREADHUIZA_PEREYRA_ERIC_TALKING_SIGNS_SIMPLE.pdf.jpgHUIZA_PEREYRA_ERIC_TALKING_SIGNS_SIMPLE.pdf.jpgGenerated Thumbnailimage/jpeg13540https://tesis.pucp.edu.pe/bitstreams/590da006-e191-45d5-b989-b1ef17d25e7e/downloada541abebfd82d9dc67b18f12644321d0MD58falseAnonymousREADTEXTHUIZA_PEREYRA_ERIC_TALKING_SIGNS_SIMPLE.pdf.txtHUIZA_PEREYRA_ERIC_TALKING_SIGNS_SIMPLE.pdf.txtExtracted texttext/plain43520https://tesis.pucp.edu.pe/bitstreams/7160489a-82aa-4c52-85ee-7b225d343681/download1b46d1f0e57619f56dac3158b4551e85MD57falseAnonymousREAD20.500.12404/16906oai:tesis.pucp.edu.pe:20.500.12404/169062025-03-04 20:43:55.97http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.889614
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).