Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures
Descripción del Articulo
In this thesis, we introduce a novel distributed version of the N-FINDR endmember extraction algorithm, which is able to exploit computer cluster resources in order to efficiently process large volumes of hyperspectral remote sensing data. The implementation of the distributed algorithm was done by...
Autor: | |
---|---|
Formato: | tesis doctoral |
Fecha de Publicación: | 2022 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Tesis |
Lenguaje: | inglés |
OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/23519 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/23519 |
Nivel de acceso: | acceso abierto |
Materia: | Computación en la nube Percepción remota Imágenes hiperespectrales Procesamiento de imágenes--Algoritmos https://purl.org/pe-repo/ocde/ford#2.00.00 |
id |
PUCP_d949dbd515df4e75deb6ac53b9873142 |
---|---|
oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/23519 |
network_acronym_str |
PUCP |
network_name_str |
PUCP-Tesis |
repository_id_str |
. |
dc.title.es_ES.fl_str_mv |
Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures |
title |
Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures |
spellingShingle |
Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures Ayma Quirita, Victor Andres Computación en la nube Percepción remota Imágenes hiperespectrales Procesamiento de imágenes--Algoritmos https://purl.org/pe-repo/ocde/ford#2.00.00 |
title_short |
Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures |
title_full |
Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures |
title_fullStr |
Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures |
title_full_unstemmed |
Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures |
title_sort |
Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures |
author |
Ayma Quirita, Victor Andres |
author_facet |
Ayma Quirita, Victor Andres |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Beltrán Castañón, César Armando |
dc.contributor.author.fl_str_mv |
Ayma Quirita, Victor Andres |
dc.subject.es_ES.fl_str_mv |
Computación en la nube Percepción remota Imágenes hiperespectrales Procesamiento de imágenes--Algoritmos |
topic |
Computación en la nube Percepción remota Imágenes hiperespectrales Procesamiento de imágenes--Algoritmos https://purl.org/pe-repo/ocde/ford#2.00.00 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.00.00 |
description |
In this thesis, we introduce a novel distributed version of the N-FINDR endmember extraction algorithm, which is able to exploit computer cluster resources in order to efficiently process large volumes of hyperspectral remote sensing data. The implementation of the distributed algorithm was done by extending the InterCloud Data Mining Package capabilities, originally adopted for land cover classification, through the HyperCloud-RS framework, here adapted for performing endmember extraction processes, which can be likewise executed on cloud computing environments, allowing users to elastically access and exploit processing power and storage space within cloud computing architectures, for adequately processing large volumes of hyperspectral data. The framework supports distributed execution, network communication, and fault tolerance, transparently and efficiently to the user. The experimental analysis addresses the performance issues, assessing both accuracy and execution time, over the processing of different synthetic versions of the AVIRIS Cuprite hyperspectral dataset, with 3.1 Gb, 6.2 Gb, and 15.1Gb respectively, thus addressing the issue of dealing with large-scale hyperspectral data. As a further contribution of this work, we describe in detail how to extend the HyperCloud-RS framework by integrating new endmember extraction algorithms within the proposed architecture, thus enabling researchers to implement their own distributed endmember extraction approaches specifically designed for processing large volumes of hyperspectral data. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-11T16:23:08Z |
dc.date.available.none.fl_str_mv |
2022-10-11T16:23:08Z |
dc.date.created.none.fl_str_mv |
2022 |
dc.date.issued.fl_str_mv |
2022-10-11 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/23519 |
url |
http://hdl.handle.net/20.500.12404/23519 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-sa/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Tesis |
collection |
PUCP-Tesis |
bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/7c127d7e-4bb6-4750-b350-b063ebaa77a3/download https://tesis.pucp.edu.pe/bitstreams/e194c80d-a565-4f03-b6df-c3b88c00cff3/download https://tesis.pucp.edu.pe/bitstreams/a16b1e36-c8d0-4653-a197-ceca7c7c64ff/download https://tesis.pucp.edu.pe/bitstreams/fe45754b-63e4-4b0d-bc42-e54451ba5a69/download https://tesis.pucp.edu.pe/bitstreams/3f1506dd-a895-413d-abd6-ae1a23f839c3/download |
bitstream.checksum.fl_str_mv |
4a36e946a2c2b62951db6b489ce132ce b7a36ada981bb81cbd668e3fd4618f2a 8a4605be74aa9ea9d79846c1fba20a33 7b1c8e9c8a1ed38f870e7cb419a0dc60 9d89f60ea68da2c4422c65bf29a3ecec |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
_version_ |
1834736882979700736 |
spelling |
Beltrán Castañón, César ArmandoAyma Quirita, Victor Andres2022-10-11T16:23:08Z2022-10-11T16:23:08Z20222022-10-11http://hdl.handle.net/20.500.12404/23519In this thesis, we introduce a novel distributed version of the N-FINDR endmember extraction algorithm, which is able to exploit computer cluster resources in order to efficiently process large volumes of hyperspectral remote sensing data. The implementation of the distributed algorithm was done by extending the InterCloud Data Mining Package capabilities, originally adopted for land cover classification, through the HyperCloud-RS framework, here adapted for performing endmember extraction processes, which can be likewise executed on cloud computing environments, allowing users to elastically access and exploit processing power and storage space within cloud computing architectures, for adequately processing large volumes of hyperspectral data. The framework supports distributed execution, network communication, and fault tolerance, transparently and efficiently to the user. The experimental analysis addresses the performance issues, assessing both accuracy and execution time, over the processing of different synthetic versions of the AVIRIS Cuprite hyperspectral dataset, with 3.1 Gb, 6.2 Gb, and 15.1Gb respectively, thus addressing the issue of dealing with large-scale hyperspectral data. As a further contribution of this work, we describe in detail how to extend the HyperCloud-RS framework by integrating new endmember extraction algorithms within the proposed architecture, thus enabling researchers to implement their own distributed endmember extraction approaches specifically designed for processing large volumes of hyperspectral data.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/2.5/pe/Computación en la nubePercepción remotaImágenes hiperespectralesProcesamiento de imágenes--Algoritmoshttps://purl.org/pe-repo/ocde/ford#2.00.00Distributed Hyperspectral Image Analysis based on Cloud Computing Architecturesinfo:eu-repo/semantics/doctoralThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUDoctor en IngenieríaDoctoradoPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería29561260https://orcid.org/0000-0002-0173-414043449307732028Plaza Miguel, AntonioBeltran Castañon, Cesar ArmandoMartin Hernandez, GabrielBorges Oliveira, Dario AugustoMilla Bravo, Marco Antoniohttps://purl.org/pe-repo/renati/level#doctorhttps://purl.org/pe-repo/renati/type#tesisORIGINALAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdfAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdfTexto completoapplication/pdf1520840https://tesis.pucp.edu.pe/bitstreams/7c127d7e-4bb6-4750-b350-b063ebaa77a3/download4a36e946a2c2b62951db6b489ce132ceMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://tesis.pucp.edu.pe/bitstreams/e194c80d-a565-4f03-b6df-c3b88c00cff3/downloadb7a36ada981bb81cbd668e3fd4618f2aMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/a16b1e36-c8d0-4653-a197-ceca7c7c64ff/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdf.jpgAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdf.jpgIM Thumbnailimage/jpeg11522https://tesis.pucp.edu.pe/bitstreams/fe45754b-63e4-4b0d-bc42-e54451ba5a69/download7b1c8e9c8a1ed38f870e7cb419a0dc60MD54falseAnonymousREADTEXTAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdf.txtAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdf.txtExtracted texttext/plain127998https://tesis.pucp.edu.pe/bitstreams/3f1506dd-a895-413d-abd6-ae1a23f839c3/download9d89f60ea68da2c4422c65bf29a3ececMD55falseAnonymousREAD20.500.12404/23519oai:tesis.pucp.edu.pe:20.500.12404/235192025-04-21 11:17:11.975http://creativecommons.org/licenses/by-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.754011 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).