Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures

Descripción del Articulo

In this thesis, we introduce a novel distributed version of the N-FINDR endmember extraction algorithm, which is able to exploit computer cluster resources in order to efficiently process large volumes of hyperspectral remote sensing data. The implementation of the distributed algorithm was done by...

Descripción completa

Detalles Bibliográficos
Autor: Ayma Quirita, Victor Andres
Formato: tesis doctoral
Fecha de Publicación:2022
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/23519
Enlace del recurso:http://hdl.handle.net/20.500.12404/23519
Nivel de acceso:acceso abierto
Materia:Computación en la nube
Percepción remota
Imágenes hiperespectrales
Procesamiento de imágenes--Algoritmos
https://purl.org/pe-repo/ocde/ford#2.00.00
id PUCP_d949dbd515df4e75deb6ac53b9873142
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/23519
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures
title Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures
spellingShingle Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures
Ayma Quirita, Victor Andres
Computación en la nube
Percepción remota
Imágenes hiperespectrales
Procesamiento de imágenes--Algoritmos
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures
title_full Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures
title_fullStr Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures
title_full_unstemmed Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures
title_sort Distributed Hyperspectral Image Analysis based on Cloud Computing Architectures
author Ayma Quirita, Victor Andres
author_facet Ayma Quirita, Victor Andres
author_role author
dc.contributor.advisor.fl_str_mv Beltrán Castañón, César Armando
dc.contributor.author.fl_str_mv Ayma Quirita, Victor Andres
dc.subject.es_ES.fl_str_mv Computación en la nube
Percepción remota
Imágenes hiperespectrales
Procesamiento de imágenes--Algoritmos
topic Computación en la nube
Percepción remota
Imágenes hiperespectrales
Procesamiento de imágenes--Algoritmos
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description In this thesis, we introduce a novel distributed version of the N-FINDR endmember extraction algorithm, which is able to exploit computer cluster resources in order to efficiently process large volumes of hyperspectral remote sensing data. The implementation of the distributed algorithm was done by extending the InterCloud Data Mining Package capabilities, originally adopted for land cover classification, through the HyperCloud-RS framework, here adapted for performing endmember extraction processes, which can be likewise executed on cloud computing environments, allowing users to elastically access and exploit processing power and storage space within cloud computing architectures, for adequately processing large volumes of hyperspectral data. The framework supports distributed execution, network communication, and fault tolerance, transparently and efficiently to the user. The experimental analysis addresses the performance issues, assessing both accuracy and execution time, over the processing of different synthetic versions of the AVIRIS Cuprite hyperspectral dataset, with 3.1 Gb, 6.2 Gb, and 15.1Gb respectively, thus addressing the issue of dealing with large-scale hyperspectral data. As a further contribution of this work, we describe in detail how to extend the HyperCloud-RS framework by integrating new endmember extraction algorithms within the proposed architecture, thus enabling researchers to implement their own distributed endmember extraction approaches specifically designed for processing large volumes of hyperspectral data.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-11T16:23:08Z
dc.date.available.none.fl_str_mv 2022-10-11T16:23:08Z
dc.date.created.none.fl_str_mv 2022
dc.date.issued.fl_str_mv 2022-10-11
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/23519
url http://hdl.handle.net/20.500.12404/23519
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.none.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/7c127d7e-4bb6-4750-b350-b063ebaa77a3/download
https://tesis.pucp.edu.pe/bitstreams/e194c80d-a565-4f03-b6df-c3b88c00cff3/download
https://tesis.pucp.edu.pe/bitstreams/a16b1e36-c8d0-4653-a197-ceca7c7c64ff/download
https://tesis.pucp.edu.pe/bitstreams/fe45754b-63e4-4b0d-bc42-e54451ba5a69/download
https://tesis.pucp.edu.pe/bitstreams/3f1506dd-a895-413d-abd6-ae1a23f839c3/download
bitstream.checksum.fl_str_mv 4a36e946a2c2b62951db6b489ce132ce
b7a36ada981bb81cbd668e3fd4618f2a
8a4605be74aa9ea9d79846c1fba20a33
7b1c8e9c8a1ed38f870e7cb419a0dc60
9d89f60ea68da2c4422c65bf29a3ecec
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1834736882979700736
spelling Beltrán Castañón, César ArmandoAyma Quirita, Victor Andres2022-10-11T16:23:08Z2022-10-11T16:23:08Z20222022-10-11http://hdl.handle.net/20.500.12404/23519In this thesis, we introduce a novel distributed version of the N-FINDR endmember extraction algorithm, which is able to exploit computer cluster resources in order to efficiently process large volumes of hyperspectral remote sensing data. The implementation of the distributed algorithm was done by extending the InterCloud Data Mining Package capabilities, originally adopted for land cover classification, through the HyperCloud-RS framework, here adapted for performing endmember extraction processes, which can be likewise executed on cloud computing environments, allowing users to elastically access and exploit processing power and storage space within cloud computing architectures, for adequately processing large volumes of hyperspectral data. The framework supports distributed execution, network communication, and fault tolerance, transparently and efficiently to the user. The experimental analysis addresses the performance issues, assessing both accuracy and execution time, over the processing of different synthetic versions of the AVIRIS Cuprite hyperspectral dataset, with 3.1 Gb, 6.2 Gb, and 15.1Gb respectively, thus addressing the issue of dealing with large-scale hyperspectral data. As a further contribution of this work, we describe in detail how to extend the HyperCloud-RS framework by integrating new endmember extraction algorithms within the proposed architecture, thus enabling researchers to implement their own distributed endmember extraction approaches specifically designed for processing large volumes of hyperspectral data.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/2.5/pe/Computación en la nubePercepción remotaImágenes hiperespectralesProcesamiento de imágenes--Algoritmoshttps://purl.org/pe-repo/ocde/ford#2.00.00Distributed Hyperspectral Image Analysis based on Cloud Computing Architecturesinfo:eu-repo/semantics/doctoralThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUDoctor en IngenieríaDoctoradoPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería29561260https://orcid.org/0000-0002-0173-414043449307732028Plaza Miguel, AntonioBeltran Castañon, Cesar ArmandoMartin Hernandez, GabrielBorges Oliveira, Dario AugustoMilla Bravo, Marco Antoniohttps://purl.org/pe-repo/renati/level#doctorhttps://purl.org/pe-repo/renati/type#tesisORIGINALAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdfAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdfTexto completoapplication/pdf1520840https://tesis.pucp.edu.pe/bitstreams/7c127d7e-4bb6-4750-b350-b063ebaa77a3/download4a36e946a2c2b62951db6b489ce132ceMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://tesis.pucp.edu.pe/bitstreams/e194c80d-a565-4f03-b6df-c3b88c00cff3/downloadb7a36ada981bb81cbd668e3fd4618f2aMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/a16b1e36-c8d0-4653-a197-ceca7c7c64ff/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdf.jpgAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdf.jpgIM Thumbnailimage/jpeg11522https://tesis.pucp.edu.pe/bitstreams/fe45754b-63e4-4b0d-bc42-e54451ba5a69/download7b1c8e9c8a1ed38f870e7cb419a0dc60MD54falseAnonymousREADTEXTAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdf.txtAYMA_QUIRITA_VICTOR_ANDRES_DISTRIBUTED_HYPERSPECTRAL_IMAGE.pdf.txtExtracted texttext/plain127998https://tesis.pucp.edu.pe/bitstreams/3f1506dd-a895-413d-abd6-ae1a23f839c3/download9d89f60ea68da2c4422c65bf29a3ececMD55falseAnonymousREAD20.500.12404/23519oai:tesis.pucp.edu.pe:20.500.12404/235192025-04-21 11:17:11.975http://creativecommons.org/licenses/by-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.754011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).