An internal fraud model for operational losses : an application to evaluate data integration techniques in operational risk management in financial institutions

Descripción del Articulo

The handling of external operational loss data by individual banks is one of the longstanding problems in risk management theory and practice. The extant literature has not provided a method to identify the best way to combine internal and external operational loss data to calculate operational risk...

Descripción completa

Detalles Bibliográficos
Autor: Paredes Leandro, Rocío Margaret
Formato: tesis doctoral
Fecha de Publicación:2016
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/7998
Enlace del recurso:http://hdl.handle.net/20.500.12404/7998
Nivel de acceso:acceso abierto
Materia:Administración de riesgos
Instituciones financieras
https://purl.org/pe-repo/ocde/ford#5.02.04
id PUCP_ac5528778b9dca052c6fa139d53fc5e9
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/7998
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv An internal fraud model for operational losses : an application to evaluate data integration techniques in operational risk management in financial institutions
title An internal fraud model for operational losses : an application to evaluate data integration techniques in operational risk management in financial institutions
spellingShingle An internal fraud model for operational losses : an application to evaluate data integration techniques in operational risk management in financial institutions
Paredes Leandro, Rocío Margaret
Administración de riesgos
Instituciones financieras
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short An internal fraud model for operational losses : an application to evaluate data integration techniques in operational risk management in financial institutions
title_full An internal fraud model for operational losses : an application to evaluate data integration techniques in operational risk management in financial institutions
title_fullStr An internal fraud model for operational losses : an application to evaluate data integration techniques in operational risk management in financial institutions
title_full_unstemmed An internal fraud model for operational losses : an application to evaluate data integration techniques in operational risk management in financial institutions
title_sort An internal fraud model for operational losses : an application to evaluate data integration techniques in operational risk management in financial institutions
author Paredes Leandro, Rocío Margaret
author_facet Paredes Leandro, Rocío Margaret
author_role author
dc.contributor.advisor.fl_str_mv Vincent, Charles
dc.contributor.author.fl_str_mv Paredes Leandro, Rocío Margaret
dc.subject.es_ES.fl_str_mv Administración de riesgos
Instituciones financieras
topic Administración de riesgos
Instituciones financieras
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description The handling of external operational loss data by individual banks is one of the longstanding problems in risk management theory and practice. The extant literature has not provided a method to identify the best way to combine internal and external operational loss data to calculate operational risk capital. Hence, to improve the knowledge and understanding of internal-external data combination in operational risk management, this study applied a simulation-based evaluation of well-known data combination techniques such as the scaling, the Bayesian, and the covariate-base techniques. This research considered operational losses arising from internal fraud in retail banking within a group of international banks that share data through an operational loss data exchange. One of the key elements of the simulation-based statistical evaluation was the development of a dynamic internal fraud model for operational losses in retail banking. The internal fraud model incorporated human factors such as the number of employees per branch and the ethical quality of workers. It also included the extent of risk controls set by bank managers. There were two sets of findings. First, according to the simulation-based evaluation, the scaling technique was by far the less useful for estimating the appropriate operational risk capital. The Bayesian and the covariate-based techniques performed best. The Bayesian technique was the best for higher percentiles while the covariate-based technique was the best at not so extreme quantiles. The choice of technique therefore depends on the risk appetite of the financial institution. The second set of findings relates to the model validation with hard data. Losses generated by the model in the banks across the world were associated with GDP growth and the corruption perception of the country where banks were located. In general, internal fraud losses are pro-cyclical and the corruption perception in a country positively affects the occurrence of internal fraud losses. When a country is perceived as more corrupt, retail banking in that country will feature more severe internal fraud losses. To the best of knowledge, it is the first time in the operational risk literature that this type of result is reported
publishDate 2016
dc.date.created.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2017-03-02T15:49:53Z
dc.date.available.none.fl_str_mv 2017-03-02T15:49:53Z
dc.date.issued.fl_str_mv 2017-03-02
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/7998
url http://hdl.handle.net/20.500.12404/7998
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.none.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/bd210939-6a3a-4b72-8c99-e3f1a503f646/download
https://tesis.pucp.edu.pe/bitstreams/920b2756-3164-47c4-b487-59f080746104/download
https://tesis.pucp.edu.pe/bitstreams/c5d0e21c-d501-406e-9434-6318c4a61ea6/download
https://tesis.pucp.edu.pe/bitstreams/66e7eed8-58a6-487e-aa91-6f926dea0a5b/download
https://tesis.pucp.edu.pe/bitstreams/40849151-b600-433c-b7e6-5cae05ee49bf/download
bitstream.checksum.fl_str_mv 3655808e5dd46167956d6870b0f43800
78fbcb528ed107d89fa91de744ce17de
752a6cb1e14b5d65fa195e80530f244a
94c0a896b9f649738d8bc64e609e4798
8ee4b2846a0a73d26eca9aa889d6d7ad
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839176308207124480
spelling Vincent, CharlesParedes Leandro, Rocío Margaret2017-03-02T15:49:53Z2017-03-02T15:49:53Z20162017-03-02http://hdl.handle.net/20.500.12404/7998The handling of external operational loss data by individual banks is one of the longstanding problems in risk management theory and practice. The extant literature has not provided a method to identify the best way to combine internal and external operational loss data to calculate operational risk capital. Hence, to improve the knowledge and understanding of internal-external data combination in operational risk management, this study applied a simulation-based evaluation of well-known data combination techniques such as the scaling, the Bayesian, and the covariate-base techniques. This research considered operational losses arising from internal fraud in retail banking within a group of international banks that share data through an operational loss data exchange. One of the key elements of the simulation-based statistical evaluation was the development of a dynamic internal fraud model for operational losses in retail banking. The internal fraud model incorporated human factors such as the number of employees per branch and the ethical quality of workers. It also included the extent of risk controls set by bank managers. There were two sets of findings. First, according to the simulation-based evaluation, the scaling technique was by far the less useful for estimating the appropriate operational risk capital. The Bayesian and the covariate-based techniques performed best. The Bayesian technique was the best for higher percentiles while the covariate-based technique was the best at not so extreme quantiles. The choice of technique therefore depends on the risk appetite of the financial institution. The second set of findings relates to the model validation with hard data. Losses generated by the model in the banks across the world were associated with GDP growth and the corruption perception of the country where banks were located. In general, internal fraud losses are pro-cyclical and the corruption perception in a country positively affects the occurrence of internal fraud losses. When a country is perceived as more corrupt, retail banking in that country will feature more severe internal fraud losses. To the best of knowledge, it is the first time in the operational risk literature that this type of result is reportedengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Administración de riesgosInstituciones financierashttps://purl.org/pe-repo/ocde/ford#5.02.04An internal fraud model for operational losses : an application to evaluate data integration techniques in operational risk management in financial institutionsinfo:eu-repo/semantics/doctoralThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUDoctor en Administración Estratégica de EmpresasDoctoradoPontificia Universidad Católica del Perú. CENTRUMAdministración Estratégica de Empresas01746264https://orcid.org/0000-0001-8943-568110188507413038https://purl.org/pe-repo/renati/level#doctorhttps://purl.org/pe-repo/renati/type#tesisCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://tesis.pucp.edu.pe/bitstreams/bd210939-6a3a-4b72-8c99-e3f1a503f646/download3655808e5dd46167956d6870b0f43800MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81364https://tesis.pucp.edu.pe/bitstreams/920b2756-3164-47c4-b487-59f080746104/download78fbcb528ed107d89fa91de744ce17deMD53falseAnonymousREADORIGINALPAREDES_INTERNAL_FRAUD.pdfPAREDES_INTERNAL_FRAUD.pdfTexto completo y anexosapplication/pdf46411214https://tesis.pucp.edu.pe/bitstreams/c5d0e21c-d501-406e-9434-6318c4a61ea6/download752a6cb1e14b5d65fa195e80530f244aMD54trueAnonymousREADTHUMBNAILPAREDES_INTERNAL_FRAUD.pdf.jpgPAREDES_INTERNAL_FRAUD.pdf.jpgIM Thumbnailimage/jpeg12527https://tesis.pucp.edu.pe/bitstreams/66e7eed8-58a6-487e-aa91-6f926dea0a5b/download94c0a896b9f649738d8bc64e609e4798MD55falseAnonymousREADTEXTPAREDES_INTERNAL_FRAUD.pdf.txtPAREDES_INTERNAL_FRAUD.pdf.txtExtracted texttext/plain286457https://tesis.pucp.edu.pe/bitstreams/40849151-b600-433c-b7e6-5cae05ee49bf/download8ee4b2846a0a73d26eca9aa889d6d7adMD56falseAnonymousREAD20.500.12404/7998oai:tesis.pucp.edu.pe:20.500.12404/79982025-07-18 13:06:12.198http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peQ29uIGxhIGF1dG9yaXphY2nDs24gZGUgZGVww7NzaXRvIGRlIG1pIHRlc2lzLCBvdG9yZ28gYSBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSBwYXJhIHJlcHJvZHVjaXIsIGRpc3RyaWJ1aXIsIGNvbXVuaWNhciBhbCBww7pibGljbywgdHJhbnNmb3JtYXIKKMO6bmljYW1lbnRlIG1lZGlhbnRlIHN1IHRyYWR1Y2Npw7NuIGEgb3Ryb3MgaWRpb21hcykgeSBwb25lciBhIGRpc3Bvc2ljacOzbiBkZWwgcMO6YmxpY28gbWkgdGVzaXMgKGluY2x1aWRvIGVsIHJlc3VtZW4pLCBlbiBmb3JtYXRvIGbDrXNpY28gbyBkaWdpdGFsLCBlbiBjdWFscXVpZXIgbWVkaW8sIGNvbm9jaWRvIG8gcG9yIGNvbm9jZXJzZSwKYSB0cmF2w6lzIGRlIGxvcyBkaXZlcnNvcyBzZXJ2aWNpb3MgcHJvdmlzdG9zIHBvciBsYSBVbml2ZXJzaWRhZCwgY3JlYWRvcyBvIHBvciBjcmVhcnNlLCB0YWxlcyBjb21vIGVsIFJlcG9zaXRvcmlvIERpZ2l0YWwgZGUgVGVzaXMgUFVDUCwgQ29sZWNjacOzbiBkZSBUZXNpcywgZW50cmUgb3Ryb3MsIGVuIGVsIFBlcsO6IHkgZW4gZWwgZXh0cmFuamVybywKcG9yIGVsIHRpZW1wbyB5IHZlY2VzIHF1ZSBjb25zaWRlcmUgbmVjZXNhcmlhcywgeSBsaWJyZSBkZSByZW11bmVyYWNpb25lcy4KRW4gdmlydHVkIGRlIGRpY2hhIGxpY2VuY2lhLCBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogcG9kcsOhIHJlcHJvZHVjaXIgbWkgdGVzaXMgZW4gY3VhbHF1aWVyIHRpcG8gZGUgc29wb3J0ZSB5IGVuIG3DoXMgZGUgdW4gZWplbXBsYXIsIHNpbiBtb2RpZmljYXIgc3UgY29udGVuaWRvLCBzb2xvIGNvbgpwcm9ww7NzaXRvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4gCkRlY2xhcm8gcXVlIGxhIHRlc2lzIGVzIHVuYSBjcmVhY2nDs24gZGUgbWkgYXV0b3LDrWEgeSBleGNsdXNpdmEgdGl0dWxhcmlkYWQsIG8gY29hdXRvcsOtYSBjb24gdGl0dWxhcmlkYWQgY29tcGFydGlkYSwgeSBtZSBlbmN1ZW50cm8gZmFjdWx0YWRvIGEgY29uY2VkZXIgbGEgcHJlc2VudGUgbGljZW5jaWEgeSwgYXNpbWlzbW8sCmdhcmFudGl6byBxdWUgZGljaGEgdGVzaXMgbm8gaW5mcmluZ2UgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2VyYXMgcGVyc29uYXMuCkxhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgQ2F0w7NsaWNhIGRlbCBQZXLDuiBjb25zaWduYXLDoSBlbCBub21icmUgZGVsL2xvcyBhdXRvci9lcyBkZSBsYSB0ZXNpcywgeSBubyBsZSBoYXLDoSBuaW5ndW5hIG1vZGlmaWNhY2nDs24gbcOhcyBxdWUgbGEgcGVybWl0aWRhIGVuIGxhIHByZXNlbnRlIGxpY2VuY2lhLgo=
score 13.433865
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).