Procesamiento de señales electroencefalográficas en un sistema embebido para una interfaz cerebro máquina

Descripción del Articulo

Una de las tecnologías actuales que está causando gran impacto en la vida de las personas con discapacidad motora severa es el Interfaz Cerebro-Máquina(BMI, por sus siglas en inglés), sistema que permite convertir pensamiento o intención de movimiento de una persona en medios de comunicación y coman...

Descripción completa

Detalles Bibliográficos
Autor: Acuña Condori, Kevin José
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/8625
Enlace del recurso:http://hdl.handle.net/20.500.12404/8625
Nivel de acceso:acceso abierto
Materia:Procesamiento de señales biomédicas
Electroencelografía
Interfaces cerebro-computadora
Diagnóstico por imágenes
https://purl.org/pe-repo/ocde/ford#2.00.00
Descripción
Sumario:Una de las tecnologías actuales que está causando gran impacto en la vida de las personas con discapacidad motora severa es el Interfaz Cerebro-Máquina(BMI, por sus siglas en inglés), sistema que permite convertir pensamiento o intención de movimiento de una persona en medios de comunicación y comandos de control de dispositivos, logrando independencia para el usuario. Sin embargo, los equipos actuales dependen de una PC que realice el procesamiento de las señales cerebrales, lo que dificulta que el sistema sea portable y de bajo costo. La presente tesis estudia y propone el uso de un sistema embebido (microcomputadora) como alternativa al uso de la PC en el BMI. Las microcomputadoras a diferencia de las PC comunes, son diseñadas para ciertos propósitos específícos, esto presenta una reducción de costo y mayor portabilidad del equipo. Con ello se pretende contribuir al desarrollo de esta nueva tecnología en el Perú haciéndolo accesible para personas de escasos recursos, lo que impactaría en la mejora de calidad de vida de las personas con discapacidad motora severa. Los resultados muestran que el sistema embebido Odroid-xu4(que cuesta 20 veces menos y es 45 veces mas liviano) puede realizar el entrenamiento de los algoritmos y el procesamiento en tiempo real de señales EEG con la misma tasa de acierto que la laptop, tardando aproximadamente 9 veces más; sin embargo estos tiempos son mínimos para aplicaciones del interfaz cerebro-máquina por lo que se demuestra que el Odroid-xu4 puede ser usado como equipo de procesamiento para una BMI portable, confiable y de bajo costo.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).