Enhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspective

Descripción del Articulo

This doctoral thesis presents an advanced predictive modeling approach for assessing toxicities in gynecologic cancer patients treated with high-dose-rate (HDR) brachytherapy. Using machine learning algorithms such as Support Vector Machines, Random Forest, and Neural Networks, the study aims to enh...

Descripción completa

Detalles Bibliográficos
Autor: Portocarrero Bonifaz, Andres
Formato: tesis doctoral
Fecha de Publicación:2024
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/29960
Enlace del recurso:http://hdl.handle.net/20.500.12404/29960
Nivel de acceso:acceso abierto
Materia:Inteligencia artificial
Cáncer--Radioterapia
Braquiterapia por radioisótopos
https://purl.org/pe-repo/ocde/ford#1.03.00
id PUCP_9f40201202d8e670f1e0433f2bb10508
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/29960
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.en_EN.fl_str_mv Enhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspective
title Enhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspective
spellingShingle Enhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspective
Portocarrero Bonifaz, Andres
Inteligencia artificial
Cáncer--Radioterapia
Braquiterapia por radioisótopos
https://purl.org/pe-repo/ocde/ford#1.03.00
title_short Enhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspective
title_full Enhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspective
title_fullStr Enhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspective
title_full_unstemmed Enhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspective
title_sort Enhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspective
author Portocarrero Bonifaz, Andres
author_facet Portocarrero Bonifaz, Andres
author_role author
dc.contributor.advisor.fl_str_mv Palacios Fernández, Daniel Francisco
dc.contributor.author.fl_str_mv Portocarrero Bonifaz, Andres
dc.subject.es_ES.fl_str_mv Inteligencia artificial
Cáncer--Radioterapia
Braquiterapia por radioisótopos
topic Inteligencia artificial
Cáncer--Radioterapia
Braquiterapia por radioisótopos
https://purl.org/pe-repo/ocde/ford#1.03.00
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.03.00
description This doctoral thesis presents an advanced predictive modeling approach for assessing toxicities in gynecologic cancer patients treated with high-dose-rate (HDR) brachytherapy. Using machine learning algorithms such as Support Vector Machines, Random Forest, and Neural Networks, the study aims to enhance the accuracy of toxicity predictions, thereby allowing the clinician to optimize treatment plans and improving patient outcomes. This research focuses on patients treated with SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators, commonly used in brachytherapy procedures. Objectives include comparing dosimetric profiles and associated toxicities between the two applicator types, investigating the predictive value of non-dosimetric factors, evaluating the performance of various machine learning models against traditional statistical methods, and identifying the most effective predictive model through rigorous cross-validation and feature selection techniques. A comprehensive dataset, one of the most sizeable in this topic, serves as the basis for training and testing the models. By integrating demographic, treatment, and tumor-related data, the study aims to develop ML models that offer a superior performance compared to existing methods. The findings highlight the potential of machine learning to revolutionize brachytherapy planning by providing physicians with precise, patient-specific risk assessments, ultimately enhancing the quality of care for gynecologic cancer patients. This research not only advances the field of radiation oncology but also contributes valuable insights into the integration of machine learning in clinical practice, paving the way for more effective and personalized cancer treatments.
publishDate 2024
dc.date.created.none.fl_str_mv 2024
dc.date.accessioned.none.fl_str_mv 2025-02-10T14:22:21Z
dc.date.issued.fl_str_mv 2025-02-10
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/29960
url http://hdl.handle.net/20.500.12404/29960
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.none.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/d583cda7-fea6-42eb-a59b-49807191a23e/download
https://tesis.pucp.edu.pe/bitstreams/ab0d46ab-4d6e-42af-9636-fc0dc3d365bc/download
https://tesis.pucp.edu.pe/bitstreams/d9d30999-ad31-44a9-ae1d-369472af8950/download
https://tesis.pucp.edu.pe/bitstreams/34a150be-7716-42c9-9ca0-713d635f8e9a/download
https://tesis.pucp.edu.pe/bitstreams/1376040f-51ff-4b0c-8f20-99a66f8b419e/download
https://tesis.pucp.edu.pe/bitstreams/80ffe8c1-d544-4ce0-a4b8-0c3a58bfac30/download
https://tesis.pucp.edu.pe/bitstreams/3f34cb77-7cf4-4e9c-a8c1-9c4d17aff804/download
bitstream.checksum.fl_str_mv c7584012b45837f1cc9ca9aedd2ea09d
524843765bf3779749ac8e90a9a7aee2
bb9bdc0b3349e4284e09149f943790b4
48725b7f9a634bc551f52084693052d1
3f0554558829a8645d03ea5b10b34f5f
a40bef41329507d1999b13a51585ce87
6e0d42e6a0049aeb5e7c64bfd395a7de
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1834737038184677376
spelling Palacios Fernández, Daniel FranciscoPortocarrero Bonifaz, Andres2025-02-10T14:22:21Z20242025-02-10http://hdl.handle.net/20.500.12404/29960This doctoral thesis presents an advanced predictive modeling approach for assessing toxicities in gynecologic cancer patients treated with high-dose-rate (HDR) brachytherapy. Using machine learning algorithms such as Support Vector Machines, Random Forest, and Neural Networks, the study aims to enhance the accuracy of toxicity predictions, thereby allowing the clinician to optimize treatment plans and improving patient outcomes. This research focuses on patients treated with SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators, commonly used in brachytherapy procedures. Objectives include comparing dosimetric profiles and associated toxicities between the two applicator types, investigating the predictive value of non-dosimetric factors, evaluating the performance of various machine learning models against traditional statistical methods, and identifying the most effective predictive model through rigorous cross-validation and feature selection techniques. A comprehensive dataset, one of the most sizeable in this topic, serves as the basis for training and testing the models. By integrating demographic, treatment, and tumor-related data, the study aims to develop ML models that offer a superior performance compared to existing methods. The findings highlight the potential of machine learning to revolutionize brachytherapy planning by providing physicians with precise, patient-specific risk assessments, ultimately enhancing the quality of care for gynecologic cancer patients. This research not only advances the field of radiation oncology but also contributes valuable insights into the integration of machine learning in clinical practice, paving the way for more effective and personalized cancer treatments.Esta tesis doctoral propone un método innovador para predecir toxicidades en pacientes con cáncer ginecológico tratados con braquiterapia de alta tasa de dosis (HDR) y radioterapia externa (EBRT). Combinando conocimientos de Física de Radiaciones Ionizantes, Oncología y Ciencia de Datos, se emplean algoritmos de Machine Learning, como Support Vector Machines, Random Forest y Redes Neuronales, para entrenar y desarrollar modelos multivariables que integran variables de dosis de radiación, datos demográficos, factores clínicos y características del tratamiento, entre otros. En primer lugar, el estudio, basado en una de las bases de datos más grandes utilizadas en este campo, con más de 12 años de recolección de datos, compara los aplicadores Syed-Neblett y Fletcher-Suit-Delclos, destacando la importancia de crear modelos multivariables en lugar de depender únicamente de la práctica histórica de utilizar tolerancias de dosis derivadas de estudios poblacionales. Posteriormente, se explora el uso del Machine Learning como herramienta predictiva en pacientes con cáncer ginecológico tratados con HDR y EBRT, realizando un análisis exhaustivo sobre cómo entrenar estos modelos de manera óptima para apoyar tratamientos de radiación más personalizados y efectivos. Los hallazgos subrayan el potencial del Machine Learning para revolucionar la planificación de la braquiterapia al proporcionar a los médicos evaluaciones de riesgo precisas y adaptadas a cada paciente, mejorando así la calidad de la atención en pacientes con cáncer ginecológico.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Inteligencia artificialCáncer--RadioterapiaBraquiterapia por radioisótoposhttps://purl.org/pe-repo/ocde/ford#1.03.00Enhanced predictive modelling of toxicities in gynecologic cancer patients treated with high dose rate brachytherapy using SyedNeblett or Fletcher-Suit-Delclos tandem and ovoid applicators: a machine learning perspectiveinfo:eu-repo/semantics/doctoralThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUDoctor en FísicaDoctoradoPontificia Universidad Católica del Perú. Escuela de PosgradoFísica001490304https://orcid.org/0000-0001-8248-347X72848992533018Pereyra Anaya, Patrizia EdelPalacios Fernández, Daniel FranciscoBeltrán Castañón, César ArmandoMorales Paliza, Manuel AngelSilva, Scotthttps://purl.org/pe-repo/renati/level#doctorhttps://purl.org/pe-repo/renati/type#tesisORIGINALPORTOCARRERO_BONIFAZ_ANDRES.pdfPORTOCARRERO_BONIFAZ_ANDRES.pdfTexto completoapplication/pdf2508967https://tesis.pucp.edu.pe/bitstreams/d583cda7-fea6-42eb-a59b-49807191a23e/downloadc7584012b45837f1cc9ca9aedd2ea09dMD51trueAnonymousREADPORTOCARRERO_BONIFAZ_ANDRES_T.pdfPORTOCARRERO_BONIFAZ_ANDRES_T.pdfReporte de originalidadapplication/pdf15011440https://tesis.pucp.edu.pe/bitstreams/ab0d46ab-4d6e-42af-9636-fc0dc3d365bc/download524843765bf3779749ac8e90a9a7aee2MD52falseAdministratorREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/d9d30999-ad31-44a9-ae1d-369472af8950/downloadbb9bdc0b3349e4284e09149f943790b4MD53falseAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81025https://tesis.pucp.edu.pe/bitstreams/34a150be-7716-42c9-9ca0-713d635f8e9a/download48725b7f9a634bc551f52084693052d1MD54falseAnonymousREADTHUMBNAILPORTOCARRERO_BONIFAZ_ANDRES.pdf.jpgPORTOCARRERO_BONIFAZ_ANDRES.pdf.jpgGenerated Thumbnailimage/jpeg11343https://tesis.pucp.edu.pe/bitstreams/1376040f-51ff-4b0c-8f20-99a66f8b419e/download3f0554558829a8645d03ea5b10b34f5fMD55falseAnonymousREADPORTOCARRERO_BONIFAZ_ANDRES_T.pdf.jpgPORTOCARRERO_BONIFAZ_ANDRES_T.pdf.jpgGenerated Thumbnailimage/jpeg8841https://tesis.pucp.edu.pe/bitstreams/80ffe8c1-d544-4ce0-a4b8-0c3a58bfac30/downloada40bef41329507d1999b13a51585ce87MD57falseAdministratorREADTEXTPORTOCARRERO_BONIFAZ_ANDRES_T.pdf.txtPORTOCARRERO_BONIFAZ_ANDRES_T.pdf.txtExtracted texttext/plain17750https://tesis.pucp.edu.pe/bitstreams/3f34cb77-7cf4-4e9c-a8c1-9c4d17aff804/download6e0d42e6a0049aeb5e7c64bfd395a7deMD56falseAdministratorREAD20.500.12404/29960oai:tesis.pucp.edu.pe:20.500.12404/299602025-04-21 16:47:10.99http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.986012
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).