Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization
Descripción del Articulo
In image processing, the l0 gradient regularization (l0-grad) is an inverse problem which penalizes the l0 norm of the reconstructed image’s gradient. Current state-of-the art algorithms for solving this problem are based on the alternating direction method of multipliers (ADMM). l0-grad however, re...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2022 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Tesis |
Lenguaje: | inglés |
OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/24145 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/24145 |
Nivel de acceso: | acceso abierto |
Materia: | Procesamiento de imágenes digitales Procesamiento de señales Algoritmos https://purl.org/pe-repo/ocde/ford#2.00.00 |
id |
PUCP_807a6c92b6cd66cc105eeb1f96f947c2 |
---|---|
oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/24145 |
network_acronym_str |
PUCP |
network_name_str |
PUCP-Tesis |
repository_id_str |
. |
dc.title.es_ES.fl_str_mv |
Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization |
title |
Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization |
spellingShingle |
Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization Vásquez Ortiz, Eduar Aníbal Procesamiento de imágenes digitales Procesamiento de señales Algoritmos https://purl.org/pe-repo/ocde/ford#2.00.00 |
title_short |
Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization |
title_full |
Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization |
title_fullStr |
Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization |
title_full_unstemmed |
Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization |
title_sort |
Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization |
author |
Vásquez Ortiz, Eduar Aníbal |
author_facet |
Vásquez Ortiz, Eduar Aníbal |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Rodríguez Valderrama, Paul Antonio |
dc.contributor.author.fl_str_mv |
Vásquez Ortiz, Eduar Aníbal |
dc.subject.es_ES.fl_str_mv |
Procesamiento de imágenes digitales Procesamiento de señales Algoritmos |
topic |
Procesamiento de imágenes digitales Procesamiento de señales Algoritmos https://purl.org/pe-repo/ocde/ford#2.00.00 |
dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.00.00 |
description |
In image processing, the l0 gradient regularization (l0-grad) is an inverse problem which penalizes the l0 norm of the reconstructed image’s gradient. Current state-of-the art algorithms for solving this problem are based on the alternating direction method of multipliers (ADMM). l0-grad however, reconstructs images poorly in cases where the noise level is large, giving images with plain regions and abrupt changes between them, that look very distorted. This happens because it prioritizes keeping the main edges but risks losing important details when the images are too noisy. Furthermore, since kÑuk0 is a non-continuous and non-convex regularizer, l0-grad can not be directly solved by methods like the accelerated proximal gradient (APG). This thesis presents a novel edge-preserving filtering model (Ql0-grad) that uses a relaxed form of the quadratic envelope of the l0 norm of the gradient. This enables us to control the level of details that can be lost during denoising and deblurring. The Ql0-grad model can be seen as a mixture of the Total Variation and l0-grad models. The results for the denoising and deblurring problems show that our model sharpens major edges while strongly attenuating textures. When it was compared to the l0-grad model, it reconstructed images with flat, texture-free regions that had smooth changes between them, even for scenarios where the input image was corrupted with a large amount of noise. Furthermore the averages of the differences between the obtained metrics with Ql0- grad and l0-grad were +0.96 dB SNR (signal to noise ratio), +0.96 dB PSNR (peak signal to noise ratio) and +0.03 SSIM (structural similarity index measure). An early version of the model was presented in the paper Fast gradient-based algorithm for a quadratic envelope relaxation of the l0 gradient regularization which was published in the international and indexed conference proceedings of the XXIII Symposium on Image, Signal Processing and Artificial Vision. |
publishDate |
2022 |
dc.date.created.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-01-26T23:51:16Z |
dc.date.available.none.fl_str_mv |
2023-01-26T23:51:16Z |
dc.date.issued.fl_str_mv |
2023-01-26 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/24145 |
url |
http://hdl.handle.net/20.500.12404/24145 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Tesis |
collection |
PUCP-Tesis |
bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/0bd11872-80f1-4aa8-98a5-b2014fb64f99/download https://tesis.pucp.edu.pe/bitstreams/ab9729a6-95a4-48ce-9aa6-27a94527075b/download https://tesis.pucp.edu.pe/bitstreams/2d28c5d0-bfa5-4fed-ad2d-95f7cef8ff5e/download https://tesis.pucp.edu.pe/bitstreams/08e64b42-1c81-47d1-a643-1e152e99ad8a/download https://tesis.pucp.edu.pe/bitstreams/cacfe4a2-d01b-4651-8a34-e8ae3ddefdd7/download https://tesis.pucp.edu.pe/bitstreams/06d7c75b-635e-4620-8f1c-7ce22cc884f9/download |
bitstream.checksum.fl_str_mv |
e5c24653692a3c35b070198efe76ec91 4c2f6af1cd78e4db56e098c02d0ceb17 8fc46f5e71650fd7adee84a69b9163c2 8a4605be74aa9ea9d79846c1fba20a33 28fbaba59c64bc809ad9f97a4d52e649 232fd4eb928997fd9d59df5ff8f2c146 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
_version_ |
1834737104220848128 |
spelling |
Rodríguez Valderrama, Paul AntonioVásquez Ortiz, Eduar Aníbal2023-01-26T23:51:16Z2023-01-26T23:51:16Z20222023-01-26http://hdl.handle.net/20.500.12404/24145In image processing, the l0 gradient regularization (l0-grad) is an inverse problem which penalizes the l0 norm of the reconstructed image’s gradient. Current state-of-the art algorithms for solving this problem are based on the alternating direction method of multipliers (ADMM). l0-grad however, reconstructs images poorly in cases where the noise level is large, giving images with plain regions and abrupt changes between them, that look very distorted. This happens because it prioritizes keeping the main edges but risks losing important details when the images are too noisy. Furthermore, since kÑuk0 is a non-continuous and non-convex regularizer, l0-grad can not be directly solved by methods like the accelerated proximal gradient (APG). This thesis presents a novel edge-preserving filtering model (Ql0-grad) that uses a relaxed form of the quadratic envelope of the l0 norm of the gradient. This enables us to control the level of details that can be lost during denoising and deblurring. The Ql0-grad model can be seen as a mixture of the Total Variation and l0-grad models. The results for the denoising and deblurring problems show that our model sharpens major edges while strongly attenuating textures. When it was compared to the l0-grad model, it reconstructed images with flat, texture-free regions that had smooth changes between them, even for scenarios where the input image was corrupted with a large amount of noise. Furthermore the averages of the differences between the obtained metrics with Ql0- grad and l0-grad were +0.96 dB SNR (signal to noise ratio), +0.96 dB PSNR (peak signal to noise ratio) and +0.03 SSIM (structural similarity index measure). An early version of the model was presented in the paper Fast gradient-based algorithm for a quadratic envelope relaxation of the l0 gradient regularization which was published in the international and indexed conference proceedings of the XXIII Symposium on Image, Signal Processing and Artificial Vision.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Procesamiento de imágenes digitalesProcesamiento de señalesAlgoritmoshttps://purl.org/pe-repo/ocde/ford#2.00.00Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularizationinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Procesamiento de Señales e Imágenes Digitales.MaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de Señales e Imágenes Digitales07754238https://orcid.org/0000-0002-8501-090770327659613077Silva Obregon, Gustavo ManuelRodriguez Valderrama, Paul AntonioMurray Herrera, Víctor Manuelhttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALVASQUEZ_ORTIZ_EDUAR_NOVEL_EDGE_PRESERVING.pdfVASQUEZ_ORTIZ_EDUAR_NOVEL_EDGE_PRESERVING.pdfTexto completoapplication/pdf4160045https://tesis.pucp.edu.pe/bitstreams/0bd11872-80f1-4aa8-98a5-b2014fb64f99/downloade5c24653692a3c35b070198efe76ec91MD51trueAnonymousREADVASQUEZ_ORTIZ_EDUAR_ANIBAL_T.pdfVASQUEZ_ORTIZ_EDUAR_ANIBAL_T.pdfReporte de originalidadapplication/pdf1143432https://tesis.pucp.edu.pe/bitstreams/ab9729a6-95a4-48ce-9aa6-27a94527075b/download4c2f6af1cd78e4db56e098c02d0ceb17MD52falseAnonymousREAD2500-01-01CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://tesis.pucp.edu.pe/bitstreams/2d28c5d0-bfa5-4fed-ad2d-95f7cef8ff5e/download8fc46f5e71650fd7adee84a69b9163c2MD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/08e64b42-1c81-47d1-a643-1e152e99ad8a/download8a4605be74aa9ea9d79846c1fba20a33MD54falseAnonymousREADTHUMBNAILVASQUEZ_ORTIZ_EDUAR_NOVEL_EDGE_PRESERVING.pdf.jpgVASQUEZ_ORTIZ_EDUAR_NOVEL_EDGE_PRESERVING.pdf.jpgIM Thumbnailimage/jpeg12325https://tesis.pucp.edu.pe/bitstreams/cacfe4a2-d01b-4651-8a34-e8ae3ddefdd7/download28fbaba59c64bc809ad9f97a4d52e649MD55falseAnonymousREADVASQUEZ_ORTIZ_EDUAR_ANIBAL_T.pdf.jpgVASQUEZ_ORTIZ_EDUAR_ANIBAL_T.pdf.jpgIM Thumbnailimage/jpeg19080https://tesis.pucp.edu.pe/bitstreams/06d7c75b-635e-4620-8f1c-7ce22cc884f9/download232fd4eb928997fd9d59df5ff8f2c146MD56falseAnonymousREAD2500-01-0120.500.12404/24145oai:tesis.pucp.edu.pe:20.500.12404/241452024-05-27 16:57:21.278http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.814772 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).