Tracking controller design for a nonlinear model of a gantry crane based on dynamic extension and robustification

Descripción del Articulo

Overhead cranes are widely used in industry for transportation of heavy loads and are common industrial structures used in building construction, factories, and harbors, traditionally operated by experienced crane operators. The underlyng system consists of three main components: trolley, bridge, an...

Descripción completa

Detalles Bibliográficos
Autor: Zárate Moya, José Luis
Formato: tesis de maestría
Fecha de Publicación:2015
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/6411
Enlace del recurso:http://hdl.handle.net/20.500.12404/6411
Nivel de acceso:acceso abierto
Materia:Control automático
Gruas
Mecánica no lineal
https://purl.org/pe-repo/ocde/ford#2.03.01
id PUCP_7589cdce6bcc41446a6264f8011618a6
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/6411
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Tracking controller design for a nonlinear model of a gantry crane based on dynamic extension and robustification
title Tracking controller design for a nonlinear model of a gantry crane based on dynamic extension and robustification
spellingShingle Tracking controller design for a nonlinear model of a gantry crane based on dynamic extension and robustification
Zárate Moya, José Luis
Control automático
Gruas
Mecánica no lineal
https://purl.org/pe-repo/ocde/ford#2.03.01
title_short Tracking controller design for a nonlinear model of a gantry crane based on dynamic extension and robustification
title_full Tracking controller design for a nonlinear model of a gantry crane based on dynamic extension and robustification
title_fullStr Tracking controller design for a nonlinear model of a gantry crane based on dynamic extension and robustification
title_full_unstemmed Tracking controller design for a nonlinear model of a gantry crane based on dynamic extension and robustification
title_sort Tracking controller design for a nonlinear model of a gantry crane based on dynamic extension and robustification
author Zárate Moya, José Luis
author_facet Zárate Moya, José Luis
author_role author
dc.contributor.advisor.fl_str_mv Reger, Johann
Elías Giordano, Dante Ángel
dc.contributor.author.fl_str_mv Zárate Moya, José Luis
dc.subject.es_ES.fl_str_mv Control automático
Gruas
Mecánica no lineal
topic Control automático
Gruas
Mecánica no lineal
https://purl.org/pe-repo/ocde/ford#2.03.01
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.03.01
description Overhead cranes are widely used in industry for transportation of heavy loads and are common industrial structures used in building construction, factories, and harbors, traditionally operated by experienced crane operators. The underlyng system consists of three main components: trolley, bridge, and gantry. Basically, the system is a trolley with pendulum. In normal operation, the natural sway of crane payloads is detrimental to the safe and efficient action. Other external disturbances parameters, wind for example, also affect the controller performance. Basically, a crane system is an underactuated system. This makes the design of its controllers complicated. Usually, this is done via the crane acceleration required for motion. The most important issues in crane motion are high positioning accuracy, short transportation time, small sway angle, and high safety. The main goal of this thesis is to achieve a robust controller design procedure, based on H∞ control theory, for a nonlinear model of a 3-D gantry crane system. The approach shall be compared with classic controllers in terms of attenuating the perturbation on the payload transportation. The model describes the position of the load, as well as the time derivatives of the position. In vew of this, flatness-based feedforward control has to be devised, accompanied by the design of an optimal linear and nonlinear feedback controller. The nomnal states can be used as optimization parameters and restrictions on stability, overshoot, position regulation, and oscillation angle, being independent of the load mass and depending on the rope length. The procedure is as follows. First, a dynamic nonlinear model of the system is obtained using the Lagrange equations of motion which describe the simultaneous travelling, crossing, lifting motions and the resultant load swing of the crane. Then, the system is exactly linearised by a dynamic extension. Next the closed-loop system, based on the linear quadratic regulator scheme, is probed and compared with the H∞ robust control system for compensating modeling errors and/or internal and external perturbation. Finally, simulation results are presented showing the efficiency of the proposed controller design scheme. Results are provided to illustrate the improved performance of the nonlinear controllers over classic pole placement and linear quadratic regulator approaches, testing its fast input tracking capability, precise payload positioning and minimal sway motion.
publishDate 2015
dc.date.accessioned.es_ES.fl_str_mv 2015-11-19T16:07:24Z
dc.date.available.es_ES.fl_str_mv 2015-11-19T16:07:24Z
dc.date.created.es_ES.fl_str_mv 2015
dc.date.issued.fl_str_mv 2015-11-19
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/6411
url http://hdl.handle.net/20.500.12404/6411
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/58dbf9df-3769-44fb-b158-9bdb5d3d97a1/download
https://tesis.pucp.edu.pe/bitstreams/c5d9f8eb-60b9-4589-9422-3013ac41908c/download
https://tesis.pucp.edu.pe/bitstreams/d7ebb5dd-7722-4547-b39c-d9777608058d/download
https://tesis.pucp.edu.pe/bitstreams/761e7f96-6f5a-4efb-9e9a-a4215eee550f/download
bitstream.checksum.fl_str_mv 246207d29152ca3a27f45736370102b4
8a4605be74aa9ea9d79846c1fba20a33
aa908be5c65afc022007831f8cc3aea4
6d57efe59bc9e49168aaf4de2bb9ccf4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839177260386484224
spelling Reger, JohannElías Giordano, Dante ÁngelZárate Moya, José Luis2015-11-19T16:07:24Z2015-11-19T16:07:24Z20152015-11-19http://hdl.handle.net/20.500.12404/6411Overhead cranes are widely used in industry for transportation of heavy loads and are common industrial structures used in building construction, factories, and harbors, traditionally operated by experienced crane operators. The underlyng system consists of three main components: trolley, bridge, and gantry. Basically, the system is a trolley with pendulum. In normal operation, the natural sway of crane payloads is detrimental to the safe and efficient action. Other external disturbances parameters, wind for example, also affect the controller performance. Basically, a crane system is an underactuated system. This makes the design of its controllers complicated. Usually, this is done via the crane acceleration required for motion. The most important issues in crane motion are high positioning accuracy, short transportation time, small sway angle, and high safety. The main goal of this thesis is to achieve a robust controller design procedure, based on H∞ control theory, for a nonlinear model of a 3-D gantry crane system. The approach shall be compared with classic controllers in terms of attenuating the perturbation on the payload transportation. The model describes the position of the load, as well as the time derivatives of the position. In vew of this, flatness-based feedforward control has to be devised, accompanied by the design of an optimal linear and nonlinear feedback controller. The nomnal states can be used as optimization parameters and restrictions on stability, overshoot, position regulation, and oscillation angle, being independent of the load mass and depending on the rope length. The procedure is as follows. First, a dynamic nonlinear model of the system is obtained using the Lagrange equations of motion which describe the simultaneous travelling, crossing, lifting motions and the resultant load swing of the crane. Then, the system is exactly linearised by a dynamic extension. Next the closed-loop system, based on the linear quadratic regulator scheme, is probed and compared with the H∞ robust control system for compensating modeling errors and/or internal and external perturbation. Finally, simulation results are presented showing the efficiency of the proposed controller design scheme. Results are provided to illustrate the improved performance of the nonlinear controllers over classic pole placement and linear quadratic regulator approaches, testing its fast input tracking capability, precise payload positioning and minimal sway motion.Kräne werden in der Industrie für den Transport schwerer Lasten eingesetzt. Man findet sie im Hochbau, Fabriken und Häfen. Traditionell werden sie von erfahrenen Kranführer betrieben. Das der Arbeit zugrunde liegende Kransystem besteht aus drei Hauptkomponenten: Transporteinheit, Brücke und Gerüst. Im Regelbetrieb ist das Schwingen von Krannutzlasten einer sicheren und effizienten Nutzung abträglich. Auch andere externe Störparameter wie beispielsweise der Wind haben einen Einfluss auf die Kontrollierbarkeit eines Krans. Grundsätzlich ist ein Kransystem ein unteraktuiertes System. Deshalb verkompliziert sich im Allgemeinen der Entwurf einer Regelung, meist auf Basis der Kranbeschleunigung. Regelziele bei der Kranbewegung sind u.a. eine hohe Positioniergenauigkeit, kurze Transportzeit, kleine Pendelwinkel und hohe Sicherheit. Das Hauptziel dieser Diplomarbeit ist der Entwurf einer robusten Reglung, gründend auf der H∞-Regelungsttheorie, für ein nichtlineares Modell eines 3-D-Portalkran- Systems. Das Verfahren soll mit dem klassischen Controllerdesign verglichen und resultierende Regelungsprobleme infolge von Störungen im Nutzlasttransport untersucht werden. Das Modell beschreibt die Position der Last sowie deren zeitliche Ableitungen. Davon kann das Problem für den Entwurf einer flachheitsbasierten Vorsteuerung abgeleitet werden, die dann mit einer optimalen, linearen bzw. nichtlinearen Regelung verbunden wird. Die nominalen Zustände können als Optimierungsparameter und Beschränkungen für die Stabilität, Überschwingen, Positionsregelung und Schwingungswinkel verwendet werden, unabhängig von der Lastmaße und in Abhängigkeit von der Seillänge. Dabei wird wie folgt vorgegangen: Zunächst wird ein nichtlineares Systemmodell mit Hilfe der Lagrange-Gleichungen erstellt. Dann wird das System mit Hilfe einer dynamischen Erweiterung exakt linearisiert. Als nächstes wird der geschlossene Regelkreis auf Basis der linear-quadratischen Regelung untersucht und mit einer robusten H∞ Regelung zur Kompensation von Modellierungsfehlern oder systeminterner und -externe Störung verglichen. Schließlich werden Simulationsergebnisse vorgestellt, welche die Wirksamkeit des Entwurfes belegen. Ein Ergebnis st dabei die verbesserte Leistung des nichtlinearen Reglers gegenüber dem klassischen Regler. Dies wird anhand einer Fähigkeit zu Verfolgung einesr schnellen Bahn, der Präzision der Positionierung und der minimalen Einflussbewegung der Nutzlast dargestellt.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Control automáticoGruasMecánica no linealhttps://purl.org/pe-repo/ocde/ford#2.03.01Tracking controller design for a nonlinear model of a gantry crane based on dynamic extension and robustificationinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Ingeniería MecatrónicaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería Mecatrónica10142907713347https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisORIGINALZARATE_JOSE_TRACKING_CONTROLLER_DESIGN_NONLINEAR.pdfZARATE_JOSE_TRACKING_CONTROLLER_DESIGN_NONLINEAR.pdfapplication/pdf4204680https://tesis.pucp.edu.pe/bitstreams/58dbf9df-3769-44fb-b158-9bdb5d3d97a1/download246207d29152ca3a27f45736370102b4MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/c5d9f8eb-60b9-4589-9422-3013ac41908c/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTZARATE_JOSE_TRACKING_CONTROLLER_DESIGN_NONLINEAR.pdf.txtZARATE_JOSE_TRACKING_CONTROLLER_DESIGN_NONLINEAR.pdf.txtExtracted texttext/plain114791https://tesis.pucp.edu.pe/bitstreams/d7ebb5dd-7722-4547-b39c-d9777608058d/downloadaa908be5c65afc022007831f8cc3aea4MD55falseAnonymousREADTHUMBNAILZARATE_JOSE_TRACKING_CONTROLLER_DESIGN_NONLINEAR.pdf.jpgZARATE_JOSE_TRACKING_CONTROLLER_DESIGN_NONLINEAR.pdf.jpgIM Thumbnailimage/jpeg35911https://tesis.pucp.edu.pe/bitstreams/761e7f96-6f5a-4efb-9e9a-a4215eee550f/download6d57efe59bc9e49168aaf4de2bb9ccf4MD56falseAnonymousREAD20.500.12404/6411oai:tesis.pucp.edu.pe:20.500.12404/64112025-07-18 13:04:19.657http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.210282
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).