Algoritmo de estimación del número de elementos móviles en videos digitales orientado a la gestión del tráfico vehicular
Descripción del Articulo
La gestión automatizada del tránsito es un campo de investigación que integra una variedad de tecnologías y se orienta principalmente a mejorar el flujo vehicular, haciendo uso de cámaras y otros sensores para recabar información sobre el estado del tráfico. En este contexto, las técnicas de procesa...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2015 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/6434 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/6434 |
Nivel de acceso: | acceso abierto |
Materia: | Algoritmos--Simulación--Diseño Transporte urbano--Lima Tránsito--Modelos matemáticos https://purl.org/pe-repo/ocde/ford#2.02.01 |
id |
PUCP_5aff5c0f10fe9d705fd465953a082f40 |
---|---|
oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/6434 |
network_acronym_str |
PUCP |
network_name_str |
PUCP-Tesis |
repository_id_str |
. |
dc.title.es_ES.fl_str_mv |
Algoritmo de estimación del número de elementos móviles en videos digitales orientado a la gestión del tráfico vehicular |
title |
Algoritmo de estimación del número de elementos móviles en videos digitales orientado a la gestión del tráfico vehicular |
spellingShingle |
Algoritmo de estimación del número de elementos móviles en videos digitales orientado a la gestión del tráfico vehicular Quesada Pacora, Jorge Gerardo Algoritmos--Simulación--Diseño Transporte urbano--Lima Tránsito--Modelos matemáticos https://purl.org/pe-repo/ocde/ford#2.02.01 |
title_short |
Algoritmo de estimación del número de elementos móviles en videos digitales orientado a la gestión del tráfico vehicular |
title_full |
Algoritmo de estimación del número de elementos móviles en videos digitales orientado a la gestión del tráfico vehicular |
title_fullStr |
Algoritmo de estimación del número de elementos móviles en videos digitales orientado a la gestión del tráfico vehicular |
title_full_unstemmed |
Algoritmo de estimación del número de elementos móviles en videos digitales orientado a la gestión del tráfico vehicular |
title_sort |
Algoritmo de estimación del número de elementos móviles en videos digitales orientado a la gestión del tráfico vehicular |
author |
Quesada Pacora, Jorge Gerardo |
author_facet |
Quesada Pacora, Jorge Gerardo |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Rodríguez Valderrama, Paúl Antonio |
dc.contributor.author.fl_str_mv |
Quesada Pacora, Jorge Gerardo |
dc.subject.es_ES.fl_str_mv |
Algoritmos--Simulación--Diseño Transporte urbano--Lima Tránsito--Modelos matemáticos |
topic |
Algoritmos--Simulación--Diseño Transporte urbano--Lima Tránsito--Modelos matemáticos https://purl.org/pe-repo/ocde/ford#2.02.01 |
dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.01 |
description |
La gestión automatizada del tránsito es un campo de investigación que integra una variedad de tecnologías y se orienta principalmente a mejorar el flujo vehicular, haciendo uso de cámaras y otros sensores para recabar información sobre el estado del tráfico. En este contexto, las técnicas de procesamiento de imágenes digitales permiten realizar diversos análisis del entorno urbano, tales como detección, conteo y seguimiento de peatones y vehículos. Entre las capacidades que requieren los sistemas que realizan dicha gestión, la estimación del número de vehículos en circulación es una de las principales. Para obtener una estimación adecuada del número de elementos móviles en un vídeo, primero debe realizarse una adecuada segmentación de dichos elementos. Existe una gran variedad de métodos que realizan dicha segmentación, sin embargo PCP (Principal Component Pursuit) es considerado el estado del arte para el modelado de fondo de vídeos digitales en donde el sensor (cámara) es estático. El objetivo de la presente tesis es el diseño de un algoritmo que estime el número de vehículos presentes en un vídeo digital de tránsito, que tenga como etapa de pre-procesamiento la segmentación de movimiento mediante PCP (utilizando una librería independiente) y funcione de manera semiautomática. Se busca también proponer una estrategia adecuada para dividir las etapas del algoritmo, de modo que ´este pueda ser descrito como un conjunto flexible de bloques, implementable en cualquier plataforma o entorno. El método propuesto se divide en dos bloques principales: entrenamiento (supervisado) y conteo (automático). Ambos bloques realizan la extracción del movimiento mediante PCP. El primer bloque genera los parámetros necesarios para el conteo mediante un análisis de las dimensiones de los objetos móviles. El segundo realiza el conteo mediante el uso de los parámetros proporcionados por la etapa de entrenamiento. Para evaluar el rendimiento del algoritmo, este ser´a implementado en el entorno de programación Matlab, y se generar´a una base de datos propia. Dicho rendimiento será evaluado en dos dimensiones: el número instantáneo de vehículos en escena y el número de vehículos que atraviesan una “puerta virtual” en un tiempo determinado. En el primer capítulo de la tesis se define puntualmente el problema que se busca resolver. En el segundo capítulo se revisan los métodos y algoritmos más populares para segmentar el movimiento, haciendo especial énfasis en PCP. Las consideraciones de diseño y los detalles del algoritmo se especifican en el capítulo tres. Finalmente, se presentan los resultados obtenidos en el capítulo cuatro, seguido de las conclusiones y recomendaciones al respecto. |
publishDate |
2015 |
dc.date.accessioned.es_ES.fl_str_mv |
2015-11-28T15:18:03Z |
dc.date.available.es_ES.fl_str_mv |
2015-11-28T15:18:03Z |
dc.date.created.es_ES.fl_str_mv |
2015 |
dc.date.issued.fl_str_mv |
2015-11-28 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/6434 |
url |
http://hdl.handle.net/20.500.12404/6434 |
dc.language.iso.es_ES.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Tesis |
collection |
PUCP-Tesis |
bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/39a39ca4-5dfa-42fa-8cc3-fd994cb67d69/download https://tesis.pucp.edu.pe/bitstreams/94ca4d5a-52b9-40c0-b42e-25796540e79a/download https://tesis.pucp.edu.pe/bitstreams/9426cade-2532-4228-82e0-6157b9b2dee3/download https://tesis.pucp.edu.pe/bitstreams/f8b3afac-d537-4b79-8e8d-3137a6274b6c/download |
bitstream.checksum.fl_str_mv |
e9168a7763ac9b496d0138c9ab565ee2 8a4605be74aa9ea9d79846c1fba20a33 a14d5aabae66bca0be8dc3bfe3dcaa26 f3c8c87192dc13ffef3cdfe240c765cd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
_version_ |
1834736811900928000 |
spelling |
Rodríguez Valderrama, Paúl AntonioQuesada Pacora, Jorge Gerardo2015-11-28T15:18:03Z2015-11-28T15:18:03Z20152015-11-28http://hdl.handle.net/20.500.12404/6434La gestión automatizada del tránsito es un campo de investigación que integra una variedad de tecnologías y se orienta principalmente a mejorar el flujo vehicular, haciendo uso de cámaras y otros sensores para recabar información sobre el estado del tráfico. En este contexto, las técnicas de procesamiento de imágenes digitales permiten realizar diversos análisis del entorno urbano, tales como detección, conteo y seguimiento de peatones y vehículos. Entre las capacidades que requieren los sistemas que realizan dicha gestión, la estimación del número de vehículos en circulación es una de las principales. Para obtener una estimación adecuada del número de elementos móviles en un vídeo, primero debe realizarse una adecuada segmentación de dichos elementos. Existe una gran variedad de métodos que realizan dicha segmentación, sin embargo PCP (Principal Component Pursuit) es considerado el estado del arte para el modelado de fondo de vídeos digitales en donde el sensor (cámara) es estático. El objetivo de la presente tesis es el diseño de un algoritmo que estime el número de vehículos presentes en un vídeo digital de tránsito, que tenga como etapa de pre-procesamiento la segmentación de movimiento mediante PCP (utilizando una librería independiente) y funcione de manera semiautomática. Se busca también proponer una estrategia adecuada para dividir las etapas del algoritmo, de modo que ´este pueda ser descrito como un conjunto flexible de bloques, implementable en cualquier plataforma o entorno. El método propuesto se divide en dos bloques principales: entrenamiento (supervisado) y conteo (automático). Ambos bloques realizan la extracción del movimiento mediante PCP. El primer bloque genera los parámetros necesarios para el conteo mediante un análisis de las dimensiones de los objetos móviles. El segundo realiza el conteo mediante el uso de los parámetros proporcionados por la etapa de entrenamiento. Para evaluar el rendimiento del algoritmo, este ser´a implementado en el entorno de programación Matlab, y se generar´a una base de datos propia. Dicho rendimiento será evaluado en dos dimensiones: el número instantáneo de vehículos en escena y el número de vehículos que atraviesan una “puerta virtual” en un tiempo determinado. En el primer capítulo de la tesis se define puntualmente el problema que se busca resolver. En el segundo capítulo se revisan los métodos y algoritmos más populares para segmentar el movimiento, haciendo especial énfasis en PCP. Las consideraciones de diseño y los detalles del algoritmo se especifican en el capítulo tres. Finalmente, se presentan los resultados obtenidos en el capítulo cuatro, seguido de las conclusiones y recomendaciones al respecto.TesisspaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Algoritmos--Simulación--DiseñoTransporte urbano--LimaTránsito--Modelos matemáticoshttps://purl.org/pe-repo/ocde/ford#2.02.01Algoritmo de estimación del número de elementos móviles en videos digitales orientado a la gestión del tráfico vehicularinfo:eu-repo/semantics/bachelorThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUIngeniero ElectrónicoTítulo ProfesionalPontificia Universidad Católica del Perú. Facultad de Ciencias e IngenieríaIngeniería Electrónica07754238712026https://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisORIGINALQUESADA_JORGE_ALGORITMO_MOVILES.pdfQUESADA_JORGE_ALGORITMO_MOVILES.pdfapplication/pdf7811219https://tesis.pucp.edu.pe/bitstreams/39a39ca4-5dfa-42fa-8cc3-fd994cb67d69/downloade9168a7763ac9b496d0138c9ab565ee2MD51trueAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/94ca4d5a-52b9-40c0-b42e-25796540e79a/download8a4605be74aa9ea9d79846c1fba20a33MD52falseAnonymousREADTEXTQUESADA_JORGE_ALGORITMO_MOVILES.pdf.txtQUESADA_JORGE_ALGORITMO_MOVILES.pdf.txtExtracted texttext/plain58964https://tesis.pucp.edu.pe/bitstreams/9426cade-2532-4228-82e0-6157b9b2dee3/downloada14d5aabae66bca0be8dc3bfe3dcaa26MD55falseAnonymousREADTHUMBNAILQUESADA_JORGE_ALGORITMO_MOVILES.pdf.jpgQUESADA_JORGE_ALGORITMO_MOVILES.pdf.jpgIM Thumbnailimage/jpeg29115https://tesis.pucp.edu.pe/bitstreams/f8b3afac-d537-4b79-8e8d-3137a6274b6c/downloadf3c8c87192dc13ffef3cdfe240c765cdMD56falseAnonymousREAD20.500.12404/6434oai:tesis.pucp.edu.pe:20.500.12404/64342025-03-12 17:43:26.246http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.947759 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).