El drenaje ácido de roca como fuente de Fe y su rol en el secuestro de Fe, S y C en el sedimento de Ensenada Ezcurra, Isla Rey Jorge, Antártida
Descripción del Articulo
El hierro ha demostrado ser un elemento de gran importancia en el océano austral, una región con alto contenido de nutrientes, pero baja producción de clorofila (HNLC, por su sigla en inglés). En general, a pesar de los diversos modos por los que el hierro llega al océano, este se encuentra en bajas...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2024 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Tesis |
Lenguaje: | español |
OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/28888 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/28888 |
Nivel de acceso: | acceso abierto |
Materia: | Agua de mar--Contenido de hierro--Antártida Drenaje ácido de minas--Antártida Sedimentación--Antártida https://purl.org/pe-repo/ocde/ford#1.05.06 |
id |
PUCP_541a54b3b07e829bdd19f500799693f9 |
---|---|
oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/28888 |
network_acronym_str |
PUCP |
network_name_str |
PUCP-Tesis |
repository_id_str |
. |
dc.title.es_ES.fl_str_mv |
El drenaje ácido de roca como fuente de Fe y su rol en el secuestro de Fe, S y C en el sedimento de Ensenada Ezcurra, Isla Rey Jorge, Antártida |
title |
El drenaje ácido de roca como fuente de Fe y su rol en el secuestro de Fe, S y C en el sedimento de Ensenada Ezcurra, Isla Rey Jorge, Antártida |
spellingShingle |
El drenaje ácido de roca como fuente de Fe y su rol en el secuestro de Fe, S y C en el sedimento de Ensenada Ezcurra, Isla Rey Jorge, Antártida Tasayco Davila, Gabriel Roberto Agua de mar--Contenido de hierro--Antártida Drenaje ácido de minas--Antártida Sedimentación--Antártida https://purl.org/pe-repo/ocde/ford#1.05.06 |
title_short |
El drenaje ácido de roca como fuente de Fe y su rol en el secuestro de Fe, S y C en el sedimento de Ensenada Ezcurra, Isla Rey Jorge, Antártida |
title_full |
El drenaje ácido de roca como fuente de Fe y su rol en el secuestro de Fe, S y C en el sedimento de Ensenada Ezcurra, Isla Rey Jorge, Antártida |
title_fullStr |
El drenaje ácido de roca como fuente de Fe y su rol en el secuestro de Fe, S y C en el sedimento de Ensenada Ezcurra, Isla Rey Jorge, Antártida |
title_full_unstemmed |
El drenaje ácido de roca como fuente de Fe y su rol en el secuestro de Fe, S y C en el sedimento de Ensenada Ezcurra, Isla Rey Jorge, Antártida |
title_sort |
El drenaje ácido de roca como fuente de Fe y su rol en el secuestro de Fe, S y C en el sedimento de Ensenada Ezcurra, Isla Rey Jorge, Antártida |
author |
Tasayco Davila, Gabriel Roberto |
author_facet |
Tasayco Davila, Gabriel Roberto |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Rosas Lizarraga, Blanca Silvia Dold, Bernhard Stefan |
dc.contributor.author.fl_str_mv |
Tasayco Davila, Gabriel Roberto |
dc.subject.es_ES.fl_str_mv |
Agua de mar--Contenido de hierro--Antártida Drenaje ácido de minas--Antártida Sedimentación--Antártida |
topic |
Agua de mar--Contenido de hierro--Antártida Drenaje ácido de minas--Antártida Sedimentación--Antártida https://purl.org/pe-repo/ocde/ford#1.05.06 |
dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.06 |
description |
El hierro ha demostrado ser un elemento de gran importancia en el océano austral, una región con alto contenido de nutrientes, pero baja producción de clorofila (HNLC, por su sigla en inglés). En general, a pesar de los diversos modos por los que el hierro llega al océano, este se encuentra en bajas concentraciones, al punto de ser considerado un nutriente limitante para la vida. Además, este elemento está relacionado con la captura del CO2 atmosférico hacia el sedimento marino por parte de organismos. La presente tesis se basa en el estudio de la evolución del drenaje ácido de roca (DAR) generado en la caleta Cardozo, isla Rey Jorge, Antártida, con el fin de determinar qué procesos predominan sobre el hierro y sobre aquellos elementos que conforman complejos aniónicos. En el presente estudio se analizaron muestras de sedimento (mediante microscopía óptica, el determinador de carbono/azufre LECO CS230 y XRF), columna de agua y agua intersticial (mediante, IC, ICP-OES y HR-ICP-MS), en tres estaciones ubicadas a lo largo de la ensenada Ezcurra, entre caleta Cardozo y bahía Almirantazgo. Los resultados fueron comparados con los de muestras adquiridas en la bahía Esperanza, para el control analítico correspondiente. Las muestras de agua fueron adquiridas mediante una roseta CTDO equipada con botellas Niskin y las de sedimento, a través de un Piston Corer; en ambos casos durante la expedición peruana ANTAR XXVII (enero-marzo 2020). En las dos estaciones más cercanas a caleta Cardozo (AC1 y AC2), se observó que la estratificación del agua se puede identificar mediante los quiebres en las curvas de la concentración de Cl- y SO42-. La estación más cercana a bahía Almirantazgo (AC3) no mostró ninguna estratificación en el CTDO debido al upwelling de aguas provenientes del estrecho de Bransfield, lo cual se tradujo en concentraciones casi constantes de estos aniones. Por otro lado, el Br es afectado por procesos de deshielo y escorrentías al encontrarse en menores concentraciones. También se observó un enriquecimiento significativo de Fe y Co en la columna de agua en comparación con la bahía Esperanza (muestreo de control). En el caso del Fe, su concentración en el agua está determinada por la disolución de sólidos en suspensión, en la columna de agua, y por la disolución reductiva de hidróxidos, en el agua de poros. Asimismo, se determinó que la concentración de elementos que conforman oxi-aniones (Cr, Mo, W) y algunos complejos aniónicos (As, Cu, U y V) está determinada por la desorción de la superficie de sólidos en suspensión y del sedimento. Por otro lado, el Al precipita rápidamente en la costa bajo la forma de hidróxidos de color blanquecino, al entrar en contacto con el agua marina. Se determinó asimismo que la cobertura glaciar aisló la pirita primaria del oxígeno atmosférico hasta hace 270 o 690 años. Esta época se caracteriza por un aporte de sedimento de mayor granulometría y minerales primarios de hierro (pirita, magnetita, hematita y epidota) que no sufrieron intemperismo químico. Dichos minerales primarios son poco reactivos con el azufre reducido, por lo cual no se apreció pirita framboidal en el sedimento transportado en esta época. Posteriormente, el inicio del retroceso glaciar permitió la oxidación de pirita, lo cual generó DAR. Este drenaje ácido formó jarosita e hidróxidos de hierro de bajo grado de cristalinidad (como schwertmannita y ferrihidrita) en la costa de la ensenada Ezcurra, además de constituir un aporte importante de hierro disuelto hacia el mar. Estos minerales secundarios, a diferencia de los primarios, pudieron ser aprovechados por los organismos, permitiendo la floración de fitoplancton. Dichos restos orgánicos fueron soterrados, secuestrando CO2 atmosférico en el sedimento. Asimismo, la materia orgánica generó microambientes reductores, los cuales permitieron el secuestro de Fe y S mediante la precipitación de pirita framboidal. Se evidenciaría así la importancia del DAR generado en caleta Cardozo en el secuestro de C, Fe y S en el sedimento de la ensenada Ezcurra. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-16T18:03:51Z |
dc.date.available.none.fl_str_mv |
2024-09-16T18:03:51Z |
dc.date.created.none.fl_str_mv |
2024 |
dc.date.issued.fl_str_mv |
2024-09-16 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/28888 |
url |
http://hdl.handle.net/20.500.12404/28888 |
dc.language.iso.es_ES.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.fl_str_mv |
SUNEDU |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Tesis |
collection |
PUCP-Tesis |
bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/34f3ad42-ac29-4e6f-8d82-f5d5371e3774/download https://tesis.pucp.edu.pe/bitstreams/a8ed6830-461a-4a3d-a624-9e4d7c5c2709/download https://tesis.pucp.edu.pe/bitstreams/a5914ef6-188f-41af-bd57-fc37b85a6493/download https://tesis.pucp.edu.pe/bitstreams/21c41a59-3551-4c5b-93e4-8040ae528b94/download https://tesis.pucp.edu.pe/bitstreams/204751cd-c5ef-4e84-b185-4859130a809c/download https://tesis.pucp.edu.pe/bitstreams/e3e36145-27d2-4dda-aead-129600dc1ad9/download https://tesis.pucp.edu.pe/bitstreams/202e2e9e-5d90-4406-a89c-d1d8d3831561/download https://tesis.pucp.edu.pe/bitstreams/9a2b96ec-977e-4b9b-b4b8-7d2ddb6f95db/download |
bitstream.checksum.fl_str_mv |
9725073c2252e10e641fdb592c4a7023 d8b056e158d33daa6abef1c1fee6b904 a9a8238e6043663c064961e6230cfeb3 8a4605be74aa9ea9d79846c1fba20a33 87dee7699b9151d88b5fe310fe30378e c434e49d55dab9ca61a7acff1b5f830f 0ab4c1cf83d58b16820f7e886abc80ef d7a183fe78cc4a0527c612020f322304 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
_version_ |
1834736795007320064 |
spelling |
Rosas Lizarraga, Blanca SilviaDold, Bernhard StefanTasayco Davila, Gabriel Roberto2024-09-16T18:03:51Z2024-09-16T18:03:51Z20242024-09-16http://hdl.handle.net/20.500.12404/28888El hierro ha demostrado ser un elemento de gran importancia en el océano austral, una región con alto contenido de nutrientes, pero baja producción de clorofila (HNLC, por su sigla en inglés). En general, a pesar de los diversos modos por los que el hierro llega al océano, este se encuentra en bajas concentraciones, al punto de ser considerado un nutriente limitante para la vida. Además, este elemento está relacionado con la captura del CO2 atmosférico hacia el sedimento marino por parte de organismos. La presente tesis se basa en el estudio de la evolución del drenaje ácido de roca (DAR) generado en la caleta Cardozo, isla Rey Jorge, Antártida, con el fin de determinar qué procesos predominan sobre el hierro y sobre aquellos elementos que conforman complejos aniónicos. En el presente estudio se analizaron muestras de sedimento (mediante microscopía óptica, el determinador de carbono/azufre LECO CS230 y XRF), columna de agua y agua intersticial (mediante, IC, ICP-OES y HR-ICP-MS), en tres estaciones ubicadas a lo largo de la ensenada Ezcurra, entre caleta Cardozo y bahía Almirantazgo. Los resultados fueron comparados con los de muestras adquiridas en la bahía Esperanza, para el control analítico correspondiente. Las muestras de agua fueron adquiridas mediante una roseta CTDO equipada con botellas Niskin y las de sedimento, a través de un Piston Corer; en ambos casos durante la expedición peruana ANTAR XXVII (enero-marzo 2020). En las dos estaciones más cercanas a caleta Cardozo (AC1 y AC2), se observó que la estratificación del agua se puede identificar mediante los quiebres en las curvas de la concentración de Cl- y SO42-. La estación más cercana a bahía Almirantazgo (AC3) no mostró ninguna estratificación en el CTDO debido al upwelling de aguas provenientes del estrecho de Bransfield, lo cual se tradujo en concentraciones casi constantes de estos aniones. Por otro lado, el Br es afectado por procesos de deshielo y escorrentías al encontrarse en menores concentraciones. También se observó un enriquecimiento significativo de Fe y Co en la columna de agua en comparación con la bahía Esperanza (muestreo de control). En el caso del Fe, su concentración en el agua está determinada por la disolución de sólidos en suspensión, en la columna de agua, y por la disolución reductiva de hidróxidos, en el agua de poros. Asimismo, se determinó que la concentración de elementos que conforman oxi-aniones (Cr, Mo, W) y algunos complejos aniónicos (As, Cu, U y V) está determinada por la desorción de la superficie de sólidos en suspensión y del sedimento. Por otro lado, el Al precipita rápidamente en la costa bajo la forma de hidróxidos de color blanquecino, al entrar en contacto con el agua marina. Se determinó asimismo que la cobertura glaciar aisló la pirita primaria del oxígeno atmosférico hasta hace 270 o 690 años. Esta época se caracteriza por un aporte de sedimento de mayor granulometría y minerales primarios de hierro (pirita, magnetita, hematita y epidota) que no sufrieron intemperismo químico. Dichos minerales primarios son poco reactivos con el azufre reducido, por lo cual no se apreció pirita framboidal en el sedimento transportado en esta época. Posteriormente, el inicio del retroceso glaciar permitió la oxidación de pirita, lo cual generó DAR. Este drenaje ácido formó jarosita e hidróxidos de hierro de bajo grado de cristalinidad (como schwertmannita y ferrihidrita) en la costa de la ensenada Ezcurra, además de constituir un aporte importante de hierro disuelto hacia el mar. Estos minerales secundarios, a diferencia de los primarios, pudieron ser aprovechados por los organismos, permitiendo la floración de fitoplancton. Dichos restos orgánicos fueron soterrados, secuestrando CO2 atmosférico en el sedimento. Asimismo, la materia orgánica generó microambientes reductores, los cuales permitieron el secuestro de Fe y S mediante la precipitación de pirita framboidal. Se evidenciaría así la importancia del DAR generado en caleta Cardozo en el secuestro de C, Fe y S en el sedimento de la ensenada Ezcurra.spaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc/2.5/pe/Agua de mar--Contenido de hierro--AntártidaDrenaje ácido de minas--AntártidaSedimentación--Antártidahttps://purl.org/pe-repo/ocde/ford#1.05.06El drenaje ácido de roca como fuente de Fe y su rol en el secuestro de Fe, S y C en el sedimento de Ensenada Ezcurra, Isla Rey Jorge, Antártidainfo:eu-repo/semantics/bachelorThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUIngeniero GeólogoTítulo ProfesionalPontificia Universidad Católica del Perú. Facultad de Ciencias e IngenieríaIngeniería Geológica06987148https://orcid.org/0000-0002-9791-9499https://orcid.org/0000-0002-9576-4198C9FOXK6T470399951532146Benites Negron, DiegoDold, Bernhard StefanVallance -, Jean Francois Victorhttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisORIGINALTASAYCO_DAVILA_GABRIEL_ROBERTO_DRENAJE_ACIDO.pdfTASAYCO_DAVILA_GABRIEL_ROBERTO_DRENAJE_ACIDO.pdfTexto completoapplication/pdf9992554https://tesis.pucp.edu.pe/bitstreams/34f3ad42-ac29-4e6f-8d82-f5d5371e3774/download9725073c2252e10e641fdb592c4a7023MD51trueAnonymousREADTASAYCO_DAVILA_GABRIEL_ROBERTO_T.pdfTASAYCO_DAVILA_GABRIEL_ROBERTO_T.pdfReporte de originalidadapplication/pdf91201713https://tesis.pucp.edu.pe/bitstreams/a8ed6830-461a-4a3d-a624-9e4d7c5c2709/downloadd8b056e158d33daa6abef1c1fee6b904MD52falseAnonymousREAD2500-01-01CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8920https://tesis.pucp.edu.pe/bitstreams/a5914ef6-188f-41af-bd57-fc37b85a6493/downloada9a8238e6043663c064961e6230cfeb3MD53falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/21c41a59-3551-4c5b-93e4-8040ae528b94/download8a4605be74aa9ea9d79846c1fba20a33MD54falseAnonymousREADTHUMBNAILTASAYCO_DAVILA_GABRIEL_ROBERTO_DRENAJE_ACIDO.pdf.jpgTASAYCO_DAVILA_GABRIEL_ROBERTO_DRENAJE_ACIDO.pdf.jpgIM Thumbnailimage/jpeg21347https://tesis.pucp.edu.pe/bitstreams/204751cd-c5ef-4e84-b185-4859130a809c/download87dee7699b9151d88b5fe310fe30378eMD55falseAnonymousREADTASAYCO_DAVILA_GABRIEL_ROBERTO_T.pdf.jpgTASAYCO_DAVILA_GABRIEL_ROBERTO_T.pdf.jpgIM Thumbnailimage/jpeg15069https://tesis.pucp.edu.pe/bitstreams/e3e36145-27d2-4dda-aead-129600dc1ad9/downloadc434e49d55dab9ca61a7acff1b5f830fMD56falseAnonymousREAD2500-01-01TEXTTASAYCO_DAVILA_GABRIEL_ROBERTO_DRENAJE_ACIDO.pdf.txtTASAYCO_DAVILA_GABRIEL_ROBERTO_DRENAJE_ACIDO.pdf.txtExtracted texttext/plain307245https://tesis.pucp.edu.pe/bitstreams/202e2e9e-5d90-4406-a89c-d1d8d3831561/download0ab4c1cf83d58b16820f7e886abc80efMD57falseAnonymousREADTASAYCO_DAVILA_GABRIEL_ROBERTO_T.pdf.txtTASAYCO_DAVILA_GABRIEL_ROBERTO_T.pdf.txtExtracted texttext/plain23483https://tesis.pucp.edu.pe/bitstreams/9a2b96ec-977e-4b9b-b4b8-7d2ddb6f95db/downloadd7a183fe78cc4a0527c612020f322304MD58falseAnonymousREAD2500-01-0120.500.12404/28888oai:tesis.pucp.edu.pe:20.500.12404/288882025-03-04 16:43:56.334http://creativecommons.org/licenses/by-nc/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.906606 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).