Desingularización de superficies casi ordinarias irreducibles

Descripción del Articulo

The aim of this thesis is to describe the resolution (partial and strict) of irreducible quasi ordinary surfaces (algebroids), by Lipman's approach. To achieve our goal, we de ne to the quasi ordinary surfaces (algebroids) and describe their parametrization by quasi ordinary branches, we also d...

Descripción completa

Detalles Bibliográficos
Autor: Paucar Rojas, Rina Roxana
Formato: tesis de maestría
Fecha de Publicación:2017
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/9952
Enlace del recurso:http://hdl.handle.net/20.500.12404/9952
Nivel de acceso:acceso abierto
Materia:Superficies algebraicas
Anillos (Álgebra)
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:The aim of this thesis is to describe the resolution (partial and strict) of irreducible quasi ordinary surfaces (algebroids), by Lipman's approach. To achieve our goal, we de ne to the quasi ordinary surfaces (algebroids) and describe their parametrization by quasi ordinary branches, we also de ne the quasi ordinary rings, local rings of the quasi ordinary irreducible surfaces, and we study the relationship that exists between the tangent cone and singular locus of a quasi ordinary ring (invariants that appear in these resolutions) and the distinguished pairs of a quasi ordinary normalized branch that represents this ring. Also, we de ne the special transforms of a quasi ordinary ring and show that they are again quasi ordinary. We conclude with an example of these resolutions.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).