Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes
Descripción del Articulo
La horticultura es una actividad que da trabajo a muchos peruanos en distintas zonas del país, sin embargo, gran parte de la producción de hortalizas es dañada por la alta incidencia de plagas de insectos. En la actualidad, un método efectivo para realizar el control de estas plagas es el uso de tra...
| Autor: | |
|---|---|
| Formato: | tesis de grado |
| Fecha de Publicación: | 2021 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Tesis |
| Lenguaje: | español |
| OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/20520 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/20520 |
| Nivel de acceso: | acceso abierto |
| Materia: | Aprendizaje profundo Algoritmos--Aplicaciones Insectos--Clasificación https://purl.org/pe-repo/ocde/ford#1.02.00 |
| id |
PUCP_419477749d5e0919ef561e0cb2dd86cb |
|---|---|
| oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/20520 |
| network_acronym_str |
PUCP |
| network_name_str |
PUCP-Tesis |
| repository_id_str |
. |
| dc.title.es_ES.fl_str_mv |
Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes |
| title |
Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes |
| spellingShingle |
Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes Córdova Pérez, Claudia Sofía Aprendizaje profundo Algoritmos--Aplicaciones Insectos--Clasificación https://purl.org/pe-repo/ocde/ford#1.02.00 |
| title_short |
Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes |
| title_full |
Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes |
| title_fullStr |
Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes |
| title_full_unstemmed |
Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes |
| title_sort |
Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes |
| author |
Córdova Pérez, Claudia Sofía |
| author_facet |
Córdova Pérez, Claudia Sofía |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Villanueva Talavera, Edwin Rafael |
| dc.contributor.author.fl_str_mv |
Córdova Pérez, Claudia Sofía |
| dc.subject.es_ES.fl_str_mv |
Aprendizaje profundo Algoritmos--Aplicaciones Insectos--Clasificación |
| topic |
Aprendizaje profundo Algoritmos--Aplicaciones Insectos--Clasificación https://purl.org/pe-repo/ocde/ford#1.02.00 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 |
| description |
La horticultura es una actividad que da trabajo a muchos peruanos en distintas zonas del país, sin embargo, gran parte de la producción de hortalizas es dañada por la alta incidencia de plagas de insectos. En la actualidad, un método efectivo para realizar el control de estas plagas es el uso de trampas pegantes, las cuales atraen y atrapan distintos tipos de insectos. Convencionalmente, las trampas pegantes son colocadas de forma que queden distanciadas uniformemente en el campo donde se realiza el cultivo y luego de varios días se realizan observaciones visuales por parte del personal entrenado en reconocimiento de insectos. No obstante, la información recopilada manualmente por el humano puede no ser tan exacta, pues existen diversos factores que pueden influir en la precisión de esta, por ejemplo, la habilidad de cada persona para detectar distintos tipos de insectos y la posible fatiga que puede ser consecuencia de haber realizado un trabajo manual por mucho tiempo y para una muestra grande de insectos. Las soluciones que se encontraron en la revisión sistemática para tratar problemas de detección de insectos fueron algoritmos de segmentación con cambio de espacio de color, lo cual permite remover el fondo de una imagen y centrarse únicamente en el objeto de interés; también, se encontraron estudios que usaron modelos de detección, los cuales hacen uso de aprendizaje profundo con redes neuronales convolucionales para lograr la identificación de los insectos. Esta última técnica ha dado resultados óptimos en distintos problemas visión computacional, por lo que el presente proyecto de investigación propone usar los modelos de detección pre-entrenados Faster R-CNN y YOLOv4 y aplicarles aprendizaje por transferencia para ajustarlos al problema de detección de tres tipos de plagas de insectos: la mosca blanca, la mosca minadora y el pulgón verde del melocotonero en etapa de adulto alado. Para ello, se debe contar con un corpus de imágenes de trampas pegantes con insectos plaga y, debido a la limitada disponibilidad de estas, se planteó construir un generador de imágenes realistas de trampas pegantes con insectos, el cual tiene en consideración factores realistas como la iluminación y el nivel de ruido en las imágenes, además, se usaron técnicas de segmentación y aumento de imágenes de modo que el corpus obtenido sea el adecuado para la fase de entrenamiento. Finalmente, se midió la métrica mAP de ambos modelos para los tres tipos de insectos. El modelo Faster R-CNN obtuvo 94.06% y el modelo YOLOv4, 95.82%, donde se concluye que el desempeño de ambos detectores es aceptable. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2021-09-30T19:08:26Z |
| dc.date.available.none.fl_str_mv |
2021-09-30T19:08:26Z |
| dc.date.created.none.fl_str_mv |
2021 |
| dc.date.issued.fl_str_mv |
2021-09-30 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/20520 |
| url |
http://hdl.handle.net/20.500.12404/20520 |
| dc.language.iso.es_ES.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
| dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
| dc.publisher.country.es_ES.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Tesis |
| collection |
PUCP-Tesis |
| bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/e52d8dcf-604d-4b42-a855-38b26fc967c7/download https://tesis.pucp.edu.pe/bitstreams/ebffb763-f315-4456-8912-9b6c254e0d93/download https://tesis.pucp.edu.pe/bitstreams/489b1d7e-8292-4de3-b7b3-770fdf3646e3/download https://tesis.pucp.edu.pe/bitstreams/160a5fdb-94ef-4b14-96cd-b2fd5271c983/download |
| bitstream.checksum.fl_str_mv |
45eac3f77be404a0654cb3a7952fe61a 8fc46f5e71650fd7adee84a69b9163c2 8a4605be74aa9ea9d79846c1fba20a33 bc5abc6a914f1731178a7bc21a46d6be |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
| repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
| _version_ |
1834736884517961728 |
| spelling |
Villanueva Talavera, Edwin RafaelCórdova Pérez, Claudia Sofía2021-09-30T19:08:26Z2021-09-30T19:08:26Z20212021-09-30http://hdl.handle.net/20.500.12404/20520La horticultura es una actividad que da trabajo a muchos peruanos en distintas zonas del país, sin embargo, gran parte de la producción de hortalizas es dañada por la alta incidencia de plagas de insectos. En la actualidad, un método efectivo para realizar el control de estas plagas es el uso de trampas pegantes, las cuales atraen y atrapan distintos tipos de insectos. Convencionalmente, las trampas pegantes son colocadas de forma que queden distanciadas uniformemente en el campo donde se realiza el cultivo y luego de varios días se realizan observaciones visuales por parte del personal entrenado en reconocimiento de insectos. No obstante, la información recopilada manualmente por el humano puede no ser tan exacta, pues existen diversos factores que pueden influir en la precisión de esta, por ejemplo, la habilidad de cada persona para detectar distintos tipos de insectos y la posible fatiga que puede ser consecuencia de haber realizado un trabajo manual por mucho tiempo y para una muestra grande de insectos. Las soluciones que se encontraron en la revisión sistemática para tratar problemas de detección de insectos fueron algoritmos de segmentación con cambio de espacio de color, lo cual permite remover el fondo de una imagen y centrarse únicamente en el objeto de interés; también, se encontraron estudios que usaron modelos de detección, los cuales hacen uso de aprendizaje profundo con redes neuronales convolucionales para lograr la identificación de los insectos. Esta última técnica ha dado resultados óptimos en distintos problemas visión computacional, por lo que el presente proyecto de investigación propone usar los modelos de detección pre-entrenados Faster R-CNN y YOLOv4 y aplicarles aprendizaje por transferencia para ajustarlos al problema de detección de tres tipos de plagas de insectos: la mosca blanca, la mosca minadora y el pulgón verde del melocotonero en etapa de adulto alado. Para ello, se debe contar con un corpus de imágenes de trampas pegantes con insectos plaga y, debido a la limitada disponibilidad de estas, se planteó construir un generador de imágenes realistas de trampas pegantes con insectos, el cual tiene en consideración factores realistas como la iluminación y el nivel de ruido en las imágenes, además, se usaron técnicas de segmentación y aumento de imágenes de modo que el corpus obtenido sea el adecuado para la fase de entrenamiento. Finalmente, se midió la métrica mAP de ambos modelos para los tres tipos de insectos. El modelo Faster R-CNN obtuvo 94.06% y el modelo YOLOv4, 95.82%, donde se concluye que el desempeño de ambos detectores es aceptable.spaPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Aprendizaje profundoAlgoritmos--AplicacionesInsectos--Clasificaciónhttps://purl.org/pe-repo/ocde/ford#1.02.00Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantesinfo:eu-repo/semantics/bachelorThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUIngeniera InformáticoTítulo ProfesionalPontificia Universidad Católica del Perú. Facultad de Ciencias e IngenieríaIngeniería Informática29714308https://orcid.org/0000-0002-6540-123071619055612286Quispe Vílchez, Eder RamiroVillanueva Talavera, Edwin RafaelSipiran Mendoza, Iván Anselmohttps://purl.org/pe-repo/renati/level#tituloProfesionalhttps://purl.org/pe-repo/renati/type#tesisORIGINALCORDOVA_PEREZ_CLAUDIA_APLICACION_APRENDIZAJE_PROFUNDO.pdfCORDOVA_PEREZ_CLAUDIA_APLICACION_APRENDIZAJE_PROFUNDO.pdfTexto completoapplication/pdf2130678https://tesis.pucp.edu.pe/bitstreams/e52d8dcf-604d-4b42-a855-38b26fc967c7/download45eac3f77be404a0654cb3a7952fe61aMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://tesis.pucp.edu.pe/bitstreams/ebffb763-f315-4456-8912-9b6c254e0d93/download8fc46f5e71650fd7adee84a69b9163c2MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/489b1d7e-8292-4de3-b7b3-770fdf3646e3/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILCORDOVA_PEREZ_CLAUDIA_APLICACION_APRENDIZAJE_PROFUNDO.pdf.jpgCORDOVA_PEREZ_CLAUDIA_APLICACION_APRENDIZAJE_PROFUNDO.pdf.jpgIM Thumbnailimage/jpeg20267https://tesis.pucp.edu.pe/bitstreams/160a5fdb-94ef-4b14-96cd-b2fd5271c983/downloadbc5abc6a914f1731178a7bc21a46d6beMD54falseAnonymousREAD20.500.12404/20520oai:tesis.pucp.edu.pe:20.500.12404/205202024-05-29 10:58:43.243http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.92737 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).