Diseño de una arquitectura para FPGA para corrección de errores mediante códigos Bosechaudhuri- Hocquenguem (BCH) para aplicaciones de nanosatélites

Descripción del Articulo

La comunicación satelital implica la transmisión de datos a grandes distancias, además de la exposición a la radiación y fenómenos climáticos. Por ello, es necesaria la implementación de códigos que permitan no solo la detección sino también la corrección de estos errores. De acuerdo con el Comité C...

Descripción completa

Detalles Bibliográficos
Autor: Giraldo Solis, Mayte Rociel
Formato: tesis de grado
Fecha de Publicación:2022
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:español
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/23883
Enlace del recurso:http://hdl.handle.net/20.500.12404/23883
Nivel de acceso:acceso abierto
Materia:Descodificadores (Electrónica)--Diseño y construcción
Electrónica--Aparatos e instrumentos
https://purl.org/pe-repo/ocde/ford#2.02.01
Descripción
Sumario:La comunicación satelital implica la transmisión de datos a grandes distancias, además de la exposición a la radiación y fenómenos climáticos. Por ello, es necesaria la implementación de códigos que permitan no solo la detección sino también la corrección de estos errores. De acuerdo con el Comité Consultivo para Sistemas de Datos Espaciales (CCSDS por sus siglas en inglés) y la Cooperación Europea para Estandarización Espacial (ECSS por sus siglas en inglés) se recomienda el código BCH (63, 56), el cual tiene la capacidad de corregir 1 bit y detectar 2 en los 63 bits de la palabra de entrada. El diseño de un decodificador BCH (63, 56) se basa en una máquina de estados algorítmica con datapath (ASM-D) en el cual los estados ejecutan los bloques de cálculo de síndrome, localización y corrección del error (búsqueda de Chien). Por otro lado, el decodificador tiene la capacidad de reconocer cuando la palabra de entrada posee más de 2 bits errados; y por tanto, no es posible su decodificación. El primer bloque es el encargado de obtener el síndrome y, a su vez, el peso de Hamming del mismo, lo cua les relevante para conocer si la palabra contiene o no errores y la posición de estos. En el presente trabajo se realizó el diseño del decodificador BCH (63, 56) por medio del software Matlab y el lenguaje de descripción de hardware Verilog HDL, obteniéndose la corrección de 1 bit errado y la detección de 2 bits errados. Esto se implementó en 9 estados de una ASM-D con la cual se obtuvo una frecuencia de operación máxima de 160. 54M Hz y 360 elementos lógicos, es decir, una utilización menor al 1% de los elementos lógicos totales. Finalmente para la simulación se generó un Testbenchen Verilog HDL, donde se colocaron distintas palabras de entradas para verificar el correcto funcionamiento del decodificador.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).