Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture

Descripción del Articulo

Human infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However...

Descripción completa

Detalles Bibliográficos
Autor: Melendez Melendez, Roy Kelvin
Formato: tesis de maestría
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/19908
Enlace del recurso:http://hdl.handle.net/20.500.12404/19908
Nivel de acceso:acceso abierto
Materia:Redes neuronales (Computación)
Espermatozoides--Análisis
https://purl.org/pe-repo/ocde/ford#1.02.01
id PUCP_3e73fddd836007826add77913f86f720
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/19908
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
title Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
spellingShingle Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
Melendez Melendez, Roy Kelvin
Redes neuronales (Computación)
Espermatozoides--Análisis
https://purl.org/pe-repo/ocde/ford#1.02.01
title_short Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
title_full Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
title_fullStr Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
title_full_unstemmed Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
title_sort Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
author Melendez Melendez, Roy Kelvin
author_facet Melendez Melendez, Roy Kelvin
author_role author
dc.contributor.advisor.fl_str_mv Beltrán Castañón, César Armando
dc.contributor.author.fl_str_mv Melendez Melendez, Roy Kelvin
dc.subject.es_ES.fl_str_mv Redes neuronales (Computación)
Espermatozoides--Análisis
topic Redes neuronales (Computación)
Espermatozoides--Análisis
https://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.01
description Human infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However,this analysis is done at the laboratory manually and depends mainly on the doctor’s experience. Besides,it is laborious, and there is also a high degree of interlaboratory variability in the results. This article proposes applying a specialized convolutional neural network architecture (U-Net),which focuses on the segmentation of sperm cells in micrographs to overcome these problems.The results showed high scores for the model segmentation metrics such as precisión (93%), IoU score (86%),and DICE score of 93%. Moreover,we can conclude that U-net architecture turned out to be a good option to carry out the segmentation of sperm cells.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-11T16:48:25Z
dc.date.available.none.fl_str_mv 2021-08-11T16:48:25Z
dc.date.created.none.fl_str_mv 2021
dc.date.issued.fl_str_mv 2021-08-11
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/19908
url http://hdl.handle.net/20.500.12404/19908
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/8220a6cb-a63c-4ed4-84ea-3e5da2fd85f0/download
https://tesis.pucp.edu.pe/bitstreams/87867ac7-54e7-4630-8e4a-14bf31705081/download
https://tesis.pucp.edu.pe/bitstreams/5c66fd83-6642-43e3-9cb3-b5d2c59559ff/download
https://tesis.pucp.edu.pe/bitstreams/7896605d-a317-4787-bca4-6d99c3818cc6/download
https://tesis.pucp.edu.pe/bitstreams/6b63b5b6-157b-4c7a-b140-cf4744849c03/download
bitstream.checksum.fl_str_mv 20a42dc16c63803e7dbfdefff5e7d47b
8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
2ab6659d73cb2755c2239760241c8ca3
53eff6e3f6c17f02d77b1ab9ee2d2a9d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839176442096648192
spelling Beltrán Castañón, César ArmandoMelendez Melendez, Roy Kelvin2021-08-11T16:48:25Z2021-08-11T16:48:25Z20212021-08-11http://hdl.handle.net/20.500.12404/19908Human infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However,this analysis is done at the laboratory manually and depends mainly on the doctor’s experience. Besides,it is laborious, and there is also a high degree of interlaboratory variability in the results. This article proposes applying a specialized convolutional neural network architecture (U-Net),which focuses on the segmentation of sperm cells in micrographs to overcome these problems.The results showed high scores for the model segmentation metrics such as precisión (93%), IoU score (86%),and DICE score of 93%. Moreover,we can conclude that U-net architecture turned out to be a good option to carry out the segmentation of sperm cells.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Redes neuronales (Computación)Espermatozoides--Análisishttps://purl.org/pe-repo/ocde/ford#1.02.01Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architectureinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Informática con mención en Ciencias de la ComputaciónMaestríaPontificia Universidad Católica del Perú. Escuela de Posgrado.Informática con mención en Ciencias de la Computación29561260https://orcid.org/0000-0002-0173-414042969373611087Olivares Poggi, Cesar AugustoBeltran Castañon, Cesar ArmandoAlfaro Alfaro, Anali Jesushttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#trabajoDeInvestigacionORIGINALMELENDEZ_MELENDEZ_ROY_CELL_SEGMENTATION.pdfMELENDEZ_MELENDEZ_ROY_CELL_SEGMENTATION.pdfTexto completoapplication/pdf504979https://tesis.pucp.edu.pe/bitstreams/8220a6cb-a63c-4ed4-84ea-3e5da2fd85f0/download20a42dc16c63803e7dbfdefff5e7d47bMD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://tesis.pucp.edu.pe/bitstreams/87867ac7-54e7-4630-8e4a-14bf31705081/download8fc46f5e71650fd7adee84a69b9163c2MD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/5c66fd83-6642-43e3-9cb3-b5d2c59559ff/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTHUMBNAILMELENDEZ_MELENDEZ_ROY_CELL_SEGMENTATION.pdf.jpgMELENDEZ_MELENDEZ_ROY_CELL_SEGMENTATION.pdf.jpgIM Thumbnailimage/jpeg13705https://tesis.pucp.edu.pe/bitstreams/7896605d-a317-4787-bca4-6d99c3818cc6/download2ab6659d73cb2755c2239760241c8ca3MD54falseAnonymousREADTEXTMELENDEZ_MELENDEZ_ROY_CELL_SEGMENTATION.pdf.txtMELENDEZ_MELENDEZ_ROY_CELL_SEGMENTATION.pdf.txtExtracted texttext/plain26461https://tesis.pucp.edu.pe/bitstreams/6b63b5b6-157b-4c7a-b140-cf4744849c03/download53eff6e3f6c17f02d77b1ab9ee2d2a9dMD55falseAnonymousREAD20.500.12404/19908oai:tesis.pucp.edu.pe:20.500.12404/199082025-07-18 17:05:31.869http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.361119
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).