Model-based fault diagnosis via structural analysis of a reverse osmosis plant

Descripción del Articulo

Water desalination is one approach to force water scarcity. One of the processes used for desalination is reverse osmosis. Like other systems, a reverse osmosis plant is susceptible to faults. A fault can lead to a loss of efficiency, or if the fault is severe to a total breakdown. Appropriate measu...

Descripción completa

Detalles Bibliográficos
Autor: Göpfert, Johannes Georg
Formato: tesis de maestría
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Tesis
Lenguaje:inglés
OAI Identifier:oai:tesis.pucp.edu.pe:20.500.12404/19043
Enlace del recurso:http://hdl.handle.net/20.500.12404/19043
Nivel de acceso:acceso abierto
Materia:Agua--Tratamiento--Ósmosis inversa
Modelos matemáticos
Fallas estructurales
https://purl.org/pe-repo/ocde/ford#2.02.03
id PUCP_28d316643cc51ce4f1d8e301205724ba
oai_identifier_str oai:tesis.pucp.edu.pe:20.500.12404/19043
network_acronym_str PUCP
network_name_str PUCP-Tesis
repository_id_str .
dc.title.es_ES.fl_str_mv Model-based fault diagnosis via structural analysis of a reverse osmosis plant
title Model-based fault diagnosis via structural analysis of a reverse osmosis plant
spellingShingle Model-based fault diagnosis via structural analysis of a reverse osmosis plant
Göpfert, Johannes Georg
Agua--Tratamiento--Ósmosis inversa
Modelos matemáticos
Fallas estructurales
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Model-based fault diagnosis via structural analysis of a reverse osmosis plant
title_full Model-based fault diagnosis via structural analysis of a reverse osmosis plant
title_fullStr Model-based fault diagnosis via structural analysis of a reverse osmosis plant
title_full_unstemmed Model-based fault diagnosis via structural analysis of a reverse osmosis plant
title_sort Model-based fault diagnosis via structural analysis of a reverse osmosis plant
author Göpfert, Johannes Georg
author_facet Göpfert, Johannes Georg
author_role author
dc.contributor.advisor.fl_str_mv Pérez Zúñiga, Carlos Gustavo
Reger, Johann
dc.contributor.author.fl_str_mv Göpfert, Johannes Georg
dc.subject.es_ES.fl_str_mv Agua--Tratamiento--Ósmosis inversa
Modelos matemáticos
Fallas estructurales
topic Agua--Tratamiento--Ósmosis inversa
Modelos matemáticos
Fallas estructurales
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description Water desalination is one approach to force water scarcity. One of the processes used for desalination is reverse osmosis. Like other systems, a reverse osmosis plant is susceptible to faults. A fault can lead to a loss of efficiency, or if the fault is severe to a total breakdown. Appropriate measures can minimize the impact of faults, but this requires in time fault detection. The following thesis shows a proposal for an online fault diagnosis system of a reverse osmosis plant. For the model-based approach, a mathematical model of a reverse osmosis plant has been developed. The model contains a new approach for modeling the interaction between the high-pressure pump, the brine valve, and the membrane module. Furthermore, six faults considered for fault diagnosis have been modeled. Two of the faults are plant faults: The leakage of the feed stream and membrane fouling. The other four faults are sensor or actuator malfunctions. The fault diagnosis system is developed via structural analysis, a graph-based approach to determine a mathematical model’s overdetermined systems of equations. With the structural analysis, 73 fault-driven minimal structurally overdetermined (FMSO) sets have been determined. The results show that all six faults are detectable. However, two faults are not isolable. Five of the FMSO sets have been chosen to deduce the residuals used for online fault detection and isolation. The simulations demonstrate that the calculated residuals are appropriate to detect and isolate the faults. If one assumes that only the considered faults occur, it is possible to determine some faults’ magnitude.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-11T17:31:24Z
dc.date.available.none.fl_str_mv 2021-05-11T17:31:24Z
dc.date.created.none.fl_str_mv 2021
dc.date.issued.fl_str_mv 2021-05-11
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/19043
url http://hdl.handle.net/20.500.12404/19043
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.relation.ispartof.fl_str_mv SUNEDU
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Tesis
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Tesis
collection PUCP-Tesis
bitstream.url.fl_str_mv https://tesis.pucp.edu.pe/bitstreams/e563eaef-1f78-4dd5-a347-2b702ca4fef5/download
https://tesis.pucp.edu.pe/bitstreams/bf43317f-f3b8-418e-8f17-851c52774a39/download
https://tesis.pucp.edu.pe/bitstreams/26e22d43-654e-4684-a62f-7534d4a4f8e8/download
https://tesis.pucp.edu.pe/bitstreams/cea5e104-ffd1-4024-9b65-d3a975a04d81/download
https://tesis.pucp.edu.pe/bitstreams/35acbcbc-01d0-4c44-8f55-9f65232041a1/download
bitstream.checksum.fl_str_mv b7a36ada981bb81cbd668e3fd4618f2a
bb28f08f119f15f8af6442fe82284b82
d83119a3f1a763b0b583aabce992fdf4
8a4605be74aa9ea9d79846c1fba20a33
eb1f5125b33cf5ef3e060c698b2851dc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de Tesis PUCP
repository.mail.fl_str_mv raul.sifuentes@pucp.pe
_version_ 1839177303973691392
spelling Pérez Zúñiga, Carlos GustavoReger, JohannGöpfert, Johannes Georg2021-05-11T17:31:24Z2021-05-11T17:31:24Z20212021-05-11http://hdl.handle.net/20.500.12404/19043Water desalination is one approach to force water scarcity. One of the processes used for desalination is reverse osmosis. Like other systems, a reverse osmosis plant is susceptible to faults. A fault can lead to a loss of efficiency, or if the fault is severe to a total breakdown. Appropriate measures can minimize the impact of faults, but this requires in time fault detection. The following thesis shows a proposal for an online fault diagnosis system of a reverse osmosis plant. For the model-based approach, a mathematical model of a reverse osmosis plant has been developed. The model contains a new approach for modeling the interaction between the high-pressure pump, the brine valve, and the membrane module. Furthermore, six faults considered for fault diagnosis have been modeled. Two of the faults are plant faults: The leakage of the feed stream and membrane fouling. The other four faults are sensor or actuator malfunctions. The fault diagnosis system is developed via structural analysis, a graph-based approach to determine a mathematical model’s overdetermined systems of equations. With the structural analysis, 73 fault-driven minimal structurally overdetermined (FMSO) sets have been determined. The results show that all six faults are detectable. However, two faults are not isolable. Five of the FMSO sets have been chosen to deduce the residuals used for online fault detection and isolation. The simulations demonstrate that the calculated residuals are appropriate to detect and isolate the faults. If one assumes that only the considered faults occur, it is possible to determine some faults’ magnitude.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/2.5/pe/Agua--Tratamiento--Ósmosis inversaModelos matemáticosFallas estructuraleshttps://purl.org/pe-repo/ocde/ford#2.02.03Model-based fault diagnosis via structural analysis of a reverse osmosis plantinfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de Posgrado.Ingeniería de Control y Automatización41864666https://orcid.org/0000-0001-5946-1395-DE / CH91G6Y66CH9WPZR41712037Reger, JohannPérez Zúñiga, Carlos GustavoSotomayor Moriano, Juan Javierhttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesisCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://tesis.pucp.edu.pe/bitstreams/e563eaef-1f78-4dd5-a347-2b702ca4fef5/downloadb7a36ada981bb81cbd668e3fd4618f2aMD52falseAnonymousREADORIGINALGOPFERT_JOHANNES_MODEL_BASED_FAULT.pdfGOPFERT_JOHANNES_MODEL_BASED_FAULT.pdfTexto completoapplication/pdf1207461https://tesis.pucp.edu.pe/bitstreams/bf43317f-f3b8-418e-8f17-851c52774a39/downloadbb28f08f119f15f8af6442fe82284b82MD51trueAnonymousREADTHUMBNAILGOPFERT_JOHANNES_MODEL_BASED_FAULT.pdf.jpgGOPFERT_JOHANNES_MODEL_BASED_FAULT.pdf.jpgIM Thumbnailimage/jpeg19350https://tesis.pucp.edu.pe/bitstreams/26e22d43-654e-4684-a62f-7534d4a4f8e8/downloadd83119a3f1a763b0b583aabce992fdf4MD54falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://tesis.pucp.edu.pe/bitstreams/cea5e104-ffd1-4024-9b65-d3a975a04d81/download8a4605be74aa9ea9d79846c1fba20a33MD53falseAnonymousREADTEXTGOPFERT_JOHANNES_MODEL_BASED_FAULT.pdf.txtGOPFERT_JOHANNES_MODEL_BASED_FAULT.pdf.txtExtracted texttext/plain199529https://tesis.pucp.edu.pe/bitstreams/35acbcbc-01d0-4c44-8f55-9f65232041a1/downloadeb1f5125b33cf5ef3e060c698b2851dcMD55falseAnonymousREAD20.500.12404/19043oai:tesis.pucp.edu.pe:20.500.12404/190432025-07-18 19:13:36.482http://creativecommons.org/licenses/by-sa/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.411704
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).