Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading
Descripción del Articulo
Existing computational pathology approaches did not allow, yet, the emergence of effective/efficient computer-aided tools used as a second opinion for pathologists in the daily practice. Focusing on the case of computer-based qualification for breast cancer diagnosis, the present article proposes tw...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2019 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Tesis |
| Lenguaje: | inglés |
| OAI Identifier: | oai:tesis.pucp.edu.pe:20.500.12404/13969 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/13969 |
| Nivel de acceso: | acceso abierto |
| Materia: | Mamas--Cáncer--Diagnóstico Cáncer--Diagnóstico por imágenes Histología https://purl.org/pe-repo/ocde/ford#2.02.05 |
| id |
PUCP_238ba908e87963d80e2057a1825a5a0f |
|---|---|
| oai_identifier_str |
oai:tesis.pucp.edu.pe:20.500.12404/13969 |
| network_acronym_str |
PUCP |
| network_name_str |
PUCP-Tesis |
| repository_id_str |
. |
| dc.title.es_ES.fl_str_mv |
Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading |
| title |
Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading |
| spellingShingle |
Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading Jiménez Garay, Gabriel Alexandro Mamas--Cáncer--Diagnóstico Cáncer--Diagnóstico por imágenes Histología https://purl.org/pe-repo/ocde/ford#2.02.05 |
| title_short |
Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading |
| title_full |
Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading |
| title_fullStr |
Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading |
| title_full_unstemmed |
Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading |
| title_sort |
Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading |
| author |
Jiménez Garay, Gabriel Alexandro |
| author_facet |
Jiménez Garay, Gabriel Alexandro |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Racoceanu, Daniel |
| dc.contributor.author.fl_str_mv |
Jiménez Garay, Gabriel Alexandro |
| dc.subject.es_ES.fl_str_mv |
Mamas--Cáncer--Diagnóstico Cáncer--Diagnóstico por imágenes Histología |
| topic |
Mamas--Cáncer--Diagnóstico Cáncer--Diagnóstico por imágenes Histología https://purl.org/pe-repo/ocde/ford#2.02.05 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.05 |
| description |
Existing computational pathology approaches did not allow, yet, the emergence of effective/efficient computer-aided tools used as a second opinion for pathologists in the daily practice. Focusing on the case of computer-based qualification for breast cancer diagnosis, the present article proposes two deep learning architectures to efficiently and effectively detect and classify mitosis in a histopathological tissue sample. The first method consisted of two parts, entailing a preprocessing of the digital histological image and a free-handcrafted-feature Convolutional Neural Network (CNN) used for binary classification. Results show that the methodology proposed can achieve 95% accuracy in testing with an F1-score of 94.35%, which is higher than the results from the literature using classical image processing techniques and also higher than the approaches using handcrafted features combined with CNNs. The second approach was an end-to-end methodology using semantic segmentation. Results showed that this algorithm can achieve an accuracy higher than 95% in testing and an average Dice index of 0.6 which is higher than the results from the literature using CNNs (0.9 F1-score). Additionally, due to the semantic properties of the deep learning approach, an end-to-end deep learning framework is viable to perform both tasks: detection and classification of mitosis. The results showed the potential of deep learning in the analysis of Whole Slide Images (WSI) and its integration to computer-aided systems. The extension of this work to whole slide images is also addressed in the last two chapters; as well as, some computational key points that are useful when constructing a computer-aided-system inspired by the described technology. |
| publishDate |
2019 |
| dc.date.accessioned.es_ES.fl_str_mv |
2019-04-12T17:41:44Z |
| dc.date.available.es_ES.fl_str_mv |
2019-04-12T17:41:44Z |
| dc.date.created.es_ES.fl_str_mv |
2019 |
| dc.date.issued.fl_str_mv |
2019-04-12 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/13969 |
| url |
http://hdl.handle.net/20.500.12404/13969 |
| dc.language.iso.es_ES.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/pe/ |
| dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
| dc.publisher.country.es_ES.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:PUCP-Tesis instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Tesis |
| collection |
PUCP-Tesis |
| bitstream.url.fl_str_mv |
https://tesis.pucp.edu.pe/bitstreams/590aab74-566d-4a4d-b58a-b0a788b14e23/download https://tesis.pucp.edu.pe/bitstreams/0afb45f8-22f5-4d1c-8478-1d522a16dbe8/download https://tesis.pucp.edu.pe/bitstreams/197c9113-b7c6-4745-9ce2-69abe73b578f/download https://tesis.pucp.edu.pe/bitstreams/b506b075-43fe-43a8-99b7-0378d505f129/download https://tesis.pucp.edu.pe/bitstreams/7385ca0c-807e-43ba-a311-d228f369d0d5/download |
| bitstream.checksum.fl_str_mv |
b3e18fb0e65d31d6506ed65191f5b8b5 571d7f90347e4384d4463993bf0da63c 35481b2c8d414f16a5a053be5878fdb5 6c7a61f405c81a610eba75551127c1ce f6f4753fd574516a175e344bf13a3454 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio de Tesis PUCP |
| repository.mail.fl_str_mv |
raul.sifuentes@pucp.pe |
| _version_ |
1834737111231627264 |
| spelling |
Racoceanu, DanielJiménez Garay, Gabriel Alexandro2019-04-12T17:41:44Z2019-04-12T17:41:44Z20192019-04-12http://hdl.handle.net/20.500.12404/13969Existing computational pathology approaches did not allow, yet, the emergence of effective/efficient computer-aided tools used as a second opinion for pathologists in the daily practice. Focusing on the case of computer-based qualification for breast cancer diagnosis, the present article proposes two deep learning architectures to efficiently and effectively detect and classify mitosis in a histopathological tissue sample. The first method consisted of two parts, entailing a preprocessing of the digital histological image and a free-handcrafted-feature Convolutional Neural Network (CNN) used for binary classification. Results show that the methodology proposed can achieve 95% accuracy in testing with an F1-score of 94.35%, which is higher than the results from the literature using classical image processing techniques and also higher than the approaches using handcrafted features combined with CNNs. The second approach was an end-to-end methodology using semantic segmentation. Results showed that this algorithm can achieve an accuracy higher than 95% in testing and an average Dice index of 0.6 which is higher than the results from the literature using CNNs (0.9 F1-score). Additionally, due to the semantic properties of the deep learning approach, an end-to-end deep learning framework is viable to perform both tasks: detection and classification of mitosis. The results showed the potential of deep learning in the analysis of Whole Slide Images (WSI) and its integration to computer-aided systems. The extension of this work to whole slide images is also addressed in the last two chapters; as well as, some computational key points that are useful when constructing a computer-aided-system inspired by the described technology.Trabajo de investigaciónengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Mamas--Cáncer--DiagnósticoCáncer--Diagnóstico por imágenesHistologíahttps://purl.org/pe-repo/ocde/ford#2.02.05Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer gradinginfo:eu-repo/semantics/masterThesisreponame:PUCP-Tesisinstname:Pontificia Universidad Católica del Perúinstacron:PUCPSUNEDUMaestro en Procesamiento de Señales e Imágenes Digitales.MaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de Señales e Imágenes Digitales613077https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#trabajoDeInvestigacionORIGINALJIMENEZ_GARAY_GABRIEL_DEEP_LEARNING_SEMANTIC.pdfJIMENEZ_GARAY_GABRIEL_DEEP_LEARNING_SEMANTIC.pdfTexto completoapplication/pdf2214013https://tesis.pucp.edu.pe/bitstreams/590aab74-566d-4a4d-b58a-b0a788b14e23/downloadb3e18fb0e65d31d6506ed65191f5b8b5MD51trueAnonymousREADCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8913https://tesis.pucp.edu.pe/bitstreams/0afb45f8-22f5-4d1c-8478-1d522a16dbe8/download571d7f90347e4384d4463993bf0da63cMD52falseAnonymousREADLICENSElicense.txtlicense.txttext/plain; charset=utf-81650https://tesis.pucp.edu.pe/bitstreams/197c9113-b7c6-4745-9ce2-69abe73b578f/download35481b2c8d414f16a5a053be5878fdb5MD53falseAnonymousREADTHUMBNAILJIMENEZ_GARAY_GABRIEL_DEEP_LEARNING_SEMANTIC.pdf.jpgJIMENEZ_GARAY_GABRIEL_DEEP_LEARNING_SEMANTIC.pdf.jpgIM Thumbnailimage/jpeg13530https://tesis.pucp.edu.pe/bitstreams/b506b075-43fe-43a8-99b7-0378d505f129/download6c7a61f405c81a610eba75551127c1ceMD54falseAnonymousREADTEXTJIMENEZ_GARAY_GABRIEL_DEEP_LEARNING_SEMANTIC.pdf.txtJIMENEZ_GARAY_GABRIEL_DEEP_LEARNING_SEMANTIC.pdf.txtExtracted texttext/plain84769https://tesis.pucp.edu.pe/bitstreams/7385ca0c-807e-43ba-a311-d228f369d0d5/downloadf6f4753fd574516a175e344bf13a3454MD55falseAnonymousREAD20.500.12404/13969oai:tesis.pucp.edu.pe:20.500.12404/139692024-12-03 12:11:50.627http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessopen.accesshttps://tesis.pucp.edu.peRepositorio de Tesis PUCPraul.sifuentes@pucp.peTElDRU5DSUEgRVNUw4FOREFSCgpCYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vcywgYXV0b3Jpem8gZWwgZGVww7NzaXRvIGRlIG1pIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBkZSBUZXNpcyBQVUNQLiAKCkNvbiBsYSBhdXRvcml6YWNpw7NuIGRlIGRlcMOzc2l0byBkZSBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuLCBvdG9yZ28gYSBsYSBQb250aWZpY2lhIFVuaXZlcnNpZGFkIENhdMOzbGljYSBkZWwgUGVyw7ogdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSBwYXJhIHJlcHJvZHVjaXIsIGRpc3RyaWJ1aXIsIGNvbXVuaWNhciBhbCBww7pibGljbyB0cmFuc2Zvcm1hciAow7puaWNhbWVudGUgbWVkaWFudGUgc3UgdHJhZHVjY2nDs24gYSBvdHJvcyBpZGlvbWFzKSB5IHBvbmVyIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIChpbmNsdWlkbyBlbCByZXN1bWVuKSwgZW4gZm9ybWF0byBmw61zaWNvIG8gZGlnaXRhbCwgZW4gY3VhbHF1aWVyIG1lZGlvLCBjb25vY2lkbyBwb3IgY29ub2NlcnNlLCBhIHRyYXbDqXMgZGUgbG9zIGRpdmVyc29zIHNlcnZpY2lvcyBwcm92aXN0b3MgcG9yIGxhIFVuaXZlcnNpZGFkLCBjcmVhZG9zIG8gcG9yIGNyZWFyc2UsIHRhbGVzIGNvbW8gZWwgUmVwb3NpdG9yaW8gRGlnaXRhbCBkZSBUZXNpcyBQVUNQLCBjb2xlY2Npw7NuIGRlIHRyYWJham9zIGRlIGludmVzdGlnYWNpw7NuLCBlbnRyZSBvdHJvcywgZW4gZWwgUGVyw7ogeSBlbiBlbCBleHRyYW5qZXJvLCBwb3IgZWwgdGllbXBvIHkgdmVjZXMgcXVlIGNvbnNpZGVyZSBuZWNlc2FyaWFzLCB5IGxpYnJlIGRlIHJlbXVuZXJhY2lvbmVzLiBFbiB2aXJ0dWQgZGUgZGljaGEgbGljZW5jaWEsIGxhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgQ2F0w7NsaWNhIGRlbCBQZXLDuiBwb2Ryw6EgcmVwcm9kdWNpciBtaSB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuIGVuIGN1YWxxdWllciB0aXBvIGRlIHNvcG9ydGUgeSBlbiBtw6FzIGRlIHVuIGVqZW1wbGFyLCBzaW4gbW9kaWZpY2FyIHN1IGNvbnRlbmlkbywgc29sbyBjb24gcHJvcMOzc2l0b3MgZGUgc2VndXJpZGFkLCByZXNwYWxkbyB5IHByZXNlcnZhY2nDs24uIERlY2xhcm8gcXVlIGVsIHRyYWJham8gZGUgaW52ZXN0aWdhY2nDs24gZXMgdW5hIGNyZWFjacOzbiBkZSBtaSBhdXRvcsOtYSB5IGV4Y2x1c2l2YSB0aXR1bGFyaWRhZCwgbyBjby1hdXRvcsOtYSBjb24gdGl0dWxhcmlkYWQgY29tcGFydGlkYSwgeSBtZSBlbmN1ZW50cm8gZmFjdWx0YWRvIGEgY29uY2VkZXIgbGEgcHJlc2VudGUgbGljZW5jaWEgeSwgYXNpbWlzbW8sIGdhcmFudGl6byBxdWUgZGljaG8gdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiBubyBpbmZyaW5nZSBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJhcyBwZXJzb25hcy4gTGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBDYXTDs2xpY2EgZGVsIFBlcsO6IGNvbnNpZ25hcsOhIGVsIG5vbWJyZSBkZWwvIGxvcyBhdXRvci9lcyBkZWwgdHJhYmFqbyBkZSBpbnZlc3RpZ2FjacOzbiwgeSBubyBsZSBoYXLDoSBuaW5ndW5hIG1vZGlmaWNhY2nDs24gbcOhcyBxdWUgbGEgcGVybWl0aWRhIGVuIGxhIHByZXNlbnRlIGxpY2VuY2lhLgoK |
| score |
13.908655 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).