Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru

Descripción del Articulo

Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high‐altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial...

Descripción completa

Detalles Bibliográficos
Autores: Carbajal Llosa, Carlos Miguel, Tumbalobos Dextre, Merely, Condori Ataupillco, Levi Tatiana, Cuellar Condori, Nestor Edwin, Gavilan, Carla
Formato: preprint
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2952
Enlace del recurso:http://hdl.handle.net/20.500.12955/2952
https://doi.org/10.1016/j.geodrs.2025.e01026
Nivel de acceso:acceso abierto
Materia:Digital soil mapping
Soil organic carbon stock
Geographically weighted regression
Machine learning regression algorithms
Andes
Cartografía digital de suelos
Reservas de carbono orgánico del suelo
Regresión ponderada geográficamente
Algoritmos de regresión de aprendizaje automático
https://purl.org/pe-repo/ocde/ford#4.01.04
Regresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; Peru
Descripción
Sumario:Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high‐altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial heterogeneity of SOCS in mountainous terrain makes accurate quantification and mapping challenging. This study evaluated the performance of geospatial regression and machine learning (ML) approaches for predicting SOCS in two Peruvian Andean basins: Torobamba and Coata. We compared Geographically Weighted Regression (GWR), GWR with collinearity analysis (GWRC), their kriging‐adjusted variants, and ML models (Random Forest, Gradient Boosting). Models were built using key SOCS covariates for each basin and validated through 5‐fold cross‐validation with Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R²). In Torobamba, GWRC markedly improved performance, reducing the RMSE by 79–90% and achieving R² up to 0.99. In contrast, Coata, showed only modest improvements (RMSE reductions of 7.8–9.8%, R² = 0.30–0.39). ML models performed poorly (negative R²), likely due to feature selection, parameter tuning, or limited sample size. Overall, locally weighted regression approaches (GWRK/GWRCK) outperformed conventional ML methods for SOCS prediction in complex mountain environments, particularly with small to medium sample sizes. These results highlight the importance of accounting for spatial non‐stationarity in SOCS and provide methodological guidance for SOCS mapping in Andean ecosystems.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).