Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru

Descripción del Articulo

Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high‐altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial...

Descripción completa

Detalles Bibliográficos
Autores: Carbajal Llosa, Carlos Miguel, Tumbalobos Dextre, Merely, Condori Ataupillco, Levi Tatiana, Cuellar Condori, Nestor Edwin, Gavilan, Carla
Formato: preprint
Fecha de Publicación:2025
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2952
Enlace del recurso:http://hdl.handle.net/20.500.12955/2952
https://doi.org/10.1016/j.geodrs.2025.e01026
Nivel de acceso:acceso abierto
Materia:Digital soil mapping
Soil organic carbon stock
Geographically weighted regression
Machine learning regression algorithms
Andes
Cartografía digital de suelos
Reservas de carbono orgánico del suelo
Regresión ponderada geográficamente
Algoritmos de regresión de aprendizaje automático
https://purl.org/pe-repo/ocde/ford#4.01.04
Regresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; Peru
id INIA_efcb5bbff1d14138e7daf4f9a820895d
oai_identifier_str oai:repositorio.inia.gob.pe:20.500.12955/2952
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.none.fl_str_mv Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru
title Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru
spellingShingle Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru
Carbajal Llosa, Carlos Miguel
Digital soil mapping
Soil organic carbon stock
Geographically weighted regression
Machine learning regression algorithms
Andes
Cartografía digital de suelos
Reservas de carbono orgánico del suelo
Regresión ponderada geográficamente
Algoritmos de regresión de aprendizaje automático
https://purl.org/pe-repo/ocde/ford#4.01.04
Regresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; Peru
title_short Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru
title_full Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru
title_fullStr Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru
title_full_unstemmed Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru
title_sort Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru
author Carbajal Llosa, Carlos Miguel
author_facet Carbajal Llosa, Carlos Miguel
Tumbalobos Dextre, Merely
Condori Ataupillco, Levi Tatiana
Cuellar Condori, Nestor Edwin
Gavilan, Carla
author_role author
author2 Tumbalobos Dextre, Merely
Condori Ataupillco, Levi Tatiana
Cuellar Condori, Nestor Edwin
Gavilan, Carla
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Carbajal Llosa, Carlos Miguel
Tumbalobos Dextre, Merely
Condori Ataupillco, Levi Tatiana
Cuellar Condori, Nestor Edwin
Gavilan, Carla
dc.subject.none.fl_str_mv Digital soil mapping
Soil organic carbon stock
Geographically weighted regression
Machine learning regression algorithms
Andes
Cartografía digital de suelos
Reservas de carbono orgánico del suelo
Regresión ponderada geográficamente
Algoritmos de regresión de aprendizaje automático
topic Digital soil mapping
Soil organic carbon stock
Geographically weighted regression
Machine learning regression algorithms
Andes
Cartografía digital de suelos
Reservas de carbono orgánico del suelo
Regresión ponderada geográficamente
Algoritmos de regresión de aprendizaje automático
https://purl.org/pe-repo/ocde/ford#4.01.04
Regresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; Peru
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.04
dc.subject.agrovoc.none.fl_str_mv Regresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; Peru
description Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high‐altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial heterogeneity of SOCS in mountainous terrain makes accurate quantification and mapping challenging. This study evaluated the performance of geospatial regression and machine learning (ML) approaches for predicting SOCS in two Peruvian Andean basins: Torobamba and Coata. We compared Geographically Weighted Regression (GWR), GWR with collinearity analysis (GWRC), their kriging‐adjusted variants, and ML models (Random Forest, Gradient Boosting). Models were built using key SOCS covariates for each basin and validated through 5‐fold cross‐validation with Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R²). In Torobamba, GWRC markedly improved performance, reducing the RMSE by 79–90% and achieving R² up to 0.99. In contrast, Coata, showed only modest improvements (RMSE reductions of 7.8–9.8%, R² = 0.30–0.39). ML models performed poorly (negative R²), likely due to feature selection, parameter tuning, or limited sample size. Overall, locally weighted regression approaches (GWRK/GWRCK) outperformed conventional ML methods for SOCS prediction in complex mountain environments, particularly with small to medium sample sizes. These results highlight the importance of accounting for spatial non‐stationarity in SOCS and provide methodological guidance for SOCS mapping in Andean ecosystems.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-12-03T15:01:44Z
dc.date.available.none.fl_str_mv 2025-12-03T15:01:44Z
dc.date.issued.fl_str_mv 2025-11-06
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
format preprint
dc.identifier.citation.none.fl_str_mv Carbajal, C., Tumbalobos-Dextre, M., Condori-Ataupillco, T., Cuellar-Condori, N., & Gavilan, C. (2025). Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru. Geoderma Regional, e01026. https://doi.org/10.1016/j.geodrs.2025.e01026
dc.identifier.issn.none.fl_str_mv 2352-0094
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12955/2952
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1016/j.geodrs.2025.e01026
identifier_str_mv Carbajal, C., Tumbalobos-Dextre, M., Condori-Ataupillco, T., Cuellar-Condori, N., & Gavilan, C. (2025). Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru. Geoderma Regional, e01026. https://doi.org/10.1016/j.geodrs.2025.e01026
2352-0094
url http://hdl.handle.net/20.500.12955/2952
https://doi.org/10.1016/j.geodrs.2025.e01026
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2352-0094
dc.relation.ispartofseries.none.fl_str_mv Geoderma Regional
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.country.none.fl_str_mv NL
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Instituto Nacional de Innovación Agraria
reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.none.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/935a3121-f69a-44aa-a349-7329f80ec090/download
https://repositorio.inia.gob.pe/bitstreams/09dba5ea-8c62-47fb-be62-e644dcd6feed/download
https://repositorio.inia.gob.pe/bitstreams/a1df6e56-3421-4c0b-b5bc-a79bedeeff5d/download
bitstream.checksum.fl_str_mv a1dff3722e05e29dac20fa1a97a12ccf
d4814300f424c215dd8937249b8f0fdd
6e25a6255c84f44a17f7e0286ae97e1e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1852356930480111616
spelling Carbajal Llosa, Carlos MiguelTumbalobos Dextre, MerelyCondori Ataupillco, Levi TatianaCuellar Condori, Nestor EdwinGavilan, Carla2025-12-03T15:01:44Z2025-12-03T15:01:44Z2025-11-06Carbajal, C., Tumbalobos-Dextre, M., Condori-Ataupillco, T., Cuellar-Condori, N., & Gavilan, C. (2025). Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru. Geoderma Regional, e01026. https://doi.org/10.1016/j.geodrs.2025.e010262352-0094http://hdl.handle.net/20.500.12955/2952https://doi.org/10.1016/j.geodrs.2025.e01026Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high‐altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial heterogeneity of SOCS in mountainous terrain makes accurate quantification and mapping challenging. This study evaluated the performance of geospatial regression and machine learning (ML) approaches for predicting SOCS in two Peruvian Andean basins: Torobamba and Coata. We compared Geographically Weighted Regression (GWR), GWR with collinearity analysis (GWRC), their kriging‐adjusted variants, and ML models (Random Forest, Gradient Boosting). Models were built using key SOCS covariates for each basin and validated through 5‐fold cross‐validation with Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R²). In Torobamba, GWRC markedly improved performance, reducing the RMSE by 79–90% and achieving R² up to 0.99. In contrast, Coata, showed only modest improvements (RMSE reductions of 7.8–9.8%, R² = 0.30–0.39). ML models performed poorly (negative R²), likely due to feature selection, parameter tuning, or limited sample size. Overall, locally weighted regression approaches (GWRK/GWRCK) outperformed conventional ML methods for SOCS prediction in complex mountain environments, particularly with small to medium sample sizes. These results highlight the importance of accounting for spatial non‐stationarity in SOCS and provide methodological guidance for SOCS mapping in Andean ecosystems.To the Soil, Water, and Foliar Laboratory (LABSAF) network technicians, especially of La Molina, Canaan, ´ and Illpa Experimental Agrarian Stations headquarters. Special thanks go to Marilia Coila Mamani and Fredy Flores Galindo for their help collecting soil samplesapplication/pdfengElsevier B.V.NLurn:issn:2352-0094Geoderma Regionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIADigital soil mappingSoil organic carbon stockGeographically weighted regressionMachine learning regression algorithmsAndesCartografía digital de suelosReservas de carbono orgánico del sueloRegresión ponderada geográficamenteAlgoritmos de regresión de aprendizaje automáticohttps://purl.org/pe-repo/ocde/ford#4.01.04Regresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; PeruSpatial prediction of soil organic carbon stocks across contrasting Andean basins, Peruinfo:eu-repo/semantics/preprintLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/935a3121-f69a-44aa-a349-7329f80ec090/downloada1dff3722e05e29dac20fa1a97a12ccfMD51ORIGINALCarbajal_et-al_2025_carbon_spatial prediction_andean basins.pdfCarbajal_et-al_2025_carbon_spatial prediction_andean basins.pdfapplication/pdf1690870https://repositorio.inia.gob.pe/bitstreams/09dba5ea-8c62-47fb-be62-e644dcd6feed/downloadd4814300f424c215dd8937249b8f0fddMD51THUMBNAILCarbajal_et-al_2025_carbon_spatial prediction_andean basins_T.jpgimage/jpeg21160https://repositorio.inia.gob.pe/bitstreams/a1df6e56-3421-4c0b-b5bc-a79bedeeff5d/download6e25a6255c84f44a17f7e0286ae97e1eMD5220.500.12955/2952oai:repositorio.inia.gob.pe:20.500.12955/29522025-12-03 11:57:54.352https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg==
score 13.806414
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).