Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru
Descripción del Articulo
Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high‐altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial...
| Autores: | , , , , |
|---|---|
| Formato: | preprint |
| Fecha de Publicación: | 2025 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.inia.gob.pe:20.500.12955/2952 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12955/2952 https://doi.org/10.1016/j.geodrs.2025.e01026 |
| Nivel de acceso: | acceso abierto |
| Materia: | Digital soil mapping Soil organic carbon stock Geographically weighted regression Machine learning regression algorithms Andes Cartografía digital de suelos Reservas de carbono orgánico del suelo Regresión ponderada geográficamente Algoritmos de regresión de aprendizaje automático https://purl.org/pe-repo/ocde/ford#4.01.04 Regresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; Peru |
| id |
INIA_efcb5bbff1d14138e7daf4f9a820895d |
|---|---|
| oai_identifier_str |
oai:repositorio.inia.gob.pe:20.500.12955/2952 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.none.fl_str_mv |
Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru |
| title |
Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru |
| spellingShingle |
Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru Carbajal Llosa, Carlos Miguel Digital soil mapping Soil organic carbon stock Geographically weighted regression Machine learning regression algorithms Andes Cartografía digital de suelos Reservas de carbono orgánico del suelo Regresión ponderada geográficamente Algoritmos de regresión de aprendizaje automático https://purl.org/pe-repo/ocde/ford#4.01.04 Regresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; Peru |
| title_short |
Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru |
| title_full |
Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru |
| title_fullStr |
Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru |
| title_full_unstemmed |
Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru |
| title_sort |
Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru |
| author |
Carbajal Llosa, Carlos Miguel |
| author_facet |
Carbajal Llosa, Carlos Miguel Tumbalobos Dextre, Merely Condori Ataupillco, Levi Tatiana Cuellar Condori, Nestor Edwin Gavilan, Carla |
| author_role |
author |
| author2 |
Tumbalobos Dextre, Merely Condori Ataupillco, Levi Tatiana Cuellar Condori, Nestor Edwin Gavilan, Carla |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Carbajal Llosa, Carlos Miguel Tumbalobos Dextre, Merely Condori Ataupillco, Levi Tatiana Cuellar Condori, Nestor Edwin Gavilan, Carla |
| dc.subject.none.fl_str_mv |
Digital soil mapping Soil organic carbon stock Geographically weighted regression Machine learning regression algorithms Andes Cartografía digital de suelos Reservas de carbono orgánico del suelo Regresión ponderada geográficamente Algoritmos de regresión de aprendizaje automático |
| topic |
Digital soil mapping Soil organic carbon stock Geographically weighted regression Machine learning regression algorithms Andes Cartografía digital de suelos Reservas de carbono orgánico del suelo Regresión ponderada geográficamente Algoritmos de regresión de aprendizaje automático https://purl.org/pe-repo/ocde/ford#4.01.04 Regresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; Peru |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.04 |
| dc.subject.agrovoc.none.fl_str_mv |
Regresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; Peru |
| description |
Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high‐altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial heterogeneity of SOCS in mountainous terrain makes accurate quantification and mapping challenging. This study evaluated the performance of geospatial regression and machine learning (ML) approaches for predicting SOCS in two Peruvian Andean basins: Torobamba and Coata. We compared Geographically Weighted Regression (GWR), GWR with collinearity analysis (GWRC), their kriging‐adjusted variants, and ML models (Random Forest, Gradient Boosting). Models were built using key SOCS covariates for each basin and validated through 5‐fold cross‐validation with Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R²). In Torobamba, GWRC markedly improved performance, reducing the RMSE by 79–90% and achieving R² up to 0.99. In contrast, Coata, showed only modest improvements (RMSE reductions of 7.8–9.8%, R² = 0.30–0.39). ML models performed poorly (negative R²), likely due to feature selection, parameter tuning, or limited sample size. Overall, locally weighted regression approaches (GWRK/GWRCK) outperformed conventional ML methods for SOCS prediction in complex mountain environments, particularly with small to medium sample sizes. These results highlight the importance of accounting for spatial non‐stationarity in SOCS and provide methodological guidance for SOCS mapping in Andean ecosystems. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-12-03T15:01:44Z |
| dc.date.available.none.fl_str_mv |
2025-12-03T15:01:44Z |
| dc.date.issued.fl_str_mv |
2025-11-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/preprint |
| format |
preprint |
| dc.identifier.citation.none.fl_str_mv |
Carbajal, C., Tumbalobos-Dextre, M., Condori-Ataupillco, T., Cuellar-Condori, N., & Gavilan, C. (2025). Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru. Geoderma Regional, e01026. https://doi.org/10.1016/j.geodrs.2025.e01026 |
| dc.identifier.issn.none.fl_str_mv |
2352-0094 |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12955/2952 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.geodrs.2025.e01026 |
| identifier_str_mv |
Carbajal, C., Tumbalobos-Dextre, M., Condori-Ataupillco, T., Cuellar-Condori, N., & Gavilan, C. (2025). Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru. Geoderma Regional, e01026. https://doi.org/10.1016/j.geodrs.2025.e01026 2352-0094 |
| url |
http://hdl.handle.net/20.500.12955/2952 https://doi.org/10.1016/j.geodrs.2025.e01026 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:2352-0094 |
| dc.relation.ispartofseries.none.fl_str_mv |
Geoderma Regional |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.publisher.country.none.fl_str_mv |
NL |
| publisher.none.fl_str_mv |
Elsevier B.V. |
| dc.source.none.fl_str_mv |
Instituto Nacional de Innovación Agraria reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.none.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/935a3121-f69a-44aa-a349-7329f80ec090/download https://repositorio.inia.gob.pe/bitstreams/09dba5ea-8c62-47fb-be62-e644dcd6feed/download https://repositorio.inia.gob.pe/bitstreams/a1df6e56-3421-4c0b-b5bc-a79bedeeff5d/download |
| bitstream.checksum.fl_str_mv |
a1dff3722e05e29dac20fa1a97a12ccf d4814300f424c215dd8937249b8f0fdd 6e25a6255c84f44a17f7e0286ae97e1e |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1852356930480111616 |
| spelling |
Carbajal Llosa, Carlos MiguelTumbalobos Dextre, MerelyCondori Ataupillco, Levi TatianaCuellar Condori, Nestor EdwinGavilan, Carla2025-12-03T15:01:44Z2025-12-03T15:01:44Z2025-11-06Carbajal, C., Tumbalobos-Dextre, M., Condori-Ataupillco, T., Cuellar-Condori, N., & Gavilan, C. (2025). Spatial prediction of soil organic carbon stocks across contrasting Andean basins, Peru. Geoderma Regional, e01026. https://doi.org/10.1016/j.geodrs.2025.e010262352-0094http://hdl.handle.net/20.500.12955/2952https://doi.org/10.1016/j.geodrs.2025.e01026Soil organic carbon stocks (SOCS) are critical components of the global carbon cycling and play a central role in climate change mitigation. However, their dynamics in high‐altitude Andean ecosystems remain poorly understood despite their importance for carbon sequestration. The significant spatial heterogeneity of SOCS in mountainous terrain makes accurate quantification and mapping challenging. This study evaluated the performance of geospatial regression and machine learning (ML) approaches for predicting SOCS in two Peruvian Andean basins: Torobamba and Coata. We compared Geographically Weighted Regression (GWR), GWR with collinearity analysis (GWRC), their kriging‐adjusted variants, and ML models (Random Forest, Gradient Boosting). Models were built using key SOCS covariates for each basin and validated through 5‐fold cross‐validation with Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R²). In Torobamba, GWRC markedly improved performance, reducing the RMSE by 79–90% and achieving R² up to 0.99. In contrast, Coata, showed only modest improvements (RMSE reductions of 7.8–9.8%, R² = 0.30–0.39). ML models performed poorly (negative R²), likely due to feature selection, parameter tuning, or limited sample size. Overall, locally weighted regression approaches (GWRK/GWRCK) outperformed conventional ML methods for SOCS prediction in complex mountain environments, particularly with small to medium sample sizes. These results highlight the importance of accounting for spatial non‐stationarity in SOCS and provide methodological guidance for SOCS mapping in Andean ecosystems.To the Soil, Water, and Foliar Laboratory (LABSAF) network technicians, especially of La Molina, Canaan, ´ and Illpa Experimental Agrarian Stations headquarters. Special thanks go to Marilia Coila Mamani and Fredy Flores Galindo for their help collecting soil samplesapplication/pdfengElsevier B.V.NLurn:issn:2352-0094Geoderma Regionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación Agrariareponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIARepositorio Institucional - INIADigital soil mappingSoil organic carbon stockGeographically weighted regressionMachine learning regression algorithmsAndesCartografía digital de suelosReservas de carbono orgánico del sueloRegresión ponderada geográficamenteAlgoritmos de regresión de aprendizaje automáticohttps://purl.org/pe-repo/ocde/ford#4.01.04Regresión de paso cauteloso; stepwise regression; Cuenca hidrográfica; Watersheds; Perú; PeruSpatial prediction of soil organic carbon stocks across contrasting Andean basins, Peruinfo:eu-repo/semantics/preprintLICENSElicense.txtlicense.txttext/plain; charset=utf-81792https://repositorio.inia.gob.pe/bitstreams/935a3121-f69a-44aa-a349-7329f80ec090/downloada1dff3722e05e29dac20fa1a97a12ccfMD51ORIGINALCarbajal_et-al_2025_carbon_spatial prediction_andean basins.pdfCarbajal_et-al_2025_carbon_spatial prediction_andean basins.pdfapplication/pdf1690870https://repositorio.inia.gob.pe/bitstreams/09dba5ea-8c62-47fb-be62-e644dcd6feed/downloadd4814300f424c215dd8937249b8f0fddMD51THUMBNAILCarbajal_et-al_2025_carbon_spatial prediction_andean basins_T.jpgimage/jpeg21160https://repositorio.inia.gob.pe/bitstreams/a1df6e56-3421-4c0b-b5bc-a79bedeeff5d/download6e25a6255c84f44a17f7e0286ae97e1eMD5220.500.12955/2952oai:repositorio.inia.gob.pe:20.500.12955/29522025-12-03 11:57:54.352https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9UQTogQ09MT1FVRSBTVSBQUk9QSUEgTElDRU5DSUEgQVFVw40KRXN0YSBsaWNlbmNpYSBkZSBtdWVzdHJhIHNlIHByb3BvcmNpb25hIMO6bmljYW1lbnRlIGNvbiBmaW5lcyBpbmZvcm1hdGl2b3MuCgpMSUNFTkNJQSBERSBESVNUUklCVUNJw5NOIE5PIEVYQ0xVU0lWQQpBbCBmaXJtYXIgeSBlbnZpYXIgZXN0YSBsaWNlbmNpYSwgdXN0ZWQgKGVsIGF1dG9yIG8gcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBvdG9yZ2EgYSBEU3BhY2UgVW5pdmVyc2l0eSAoRFNVKSBlbCBkZXJlY2hvIG5vIGV4Y2x1c2l2byBkZSByZXByb2R1Y2lyLCB0cmFkdWNpciAoY29tbyBzZSBkZWZpbmUgYSBjb250aW51YWNpw7NuKSB5L28gZGlzdHJpYnVpciBzdSBlbnbDrW8gKGluY2x1aWRvIGVsIHJlc3VtZW4pLiApIGVuIHRvZG8gZWwgbXVuZG8gZW4gZm9ybWF0byBpbXByZXNvIHkgZWxlY3Ryw7NuaWNvIHkgZW4gY3VhbHF1aWVyIG1lZGlvLCBpbmNsdWlkb3MsIGVudHJlIG90cm9zLCBhdWRpbyBvIHbDrWRlby4KClVzdGVkIGFjZXB0YSBxdWUgRFNVIHB1ZWRlLCBzaW4gY2FtYmlhciBlbCBjb250ZW5pZG8sIHRyYWR1Y2lyIGVsIGVudsOtbyBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gY29uIGVsIGZpbiBkZSBwcmVzZXJ2YXJsby4KClRhbWJpw6luIGFjZXB0YSBxdWUgRFNVIHB1ZWRlIGNvbnNlcnZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBlc3RlIGVudsOtbyBwb3IgbW90aXZvcyBkZSBzZWd1cmlkYWQsIHJlc3BhbGRvIHkgcHJlc2VydmFjacOzbi4KClVzdGVkIGRlY2xhcmEgcXVlIGVsIGVudsOtbyBlcyBzdSB0cmFiYWpvIG9yaWdpbmFsIHkgcXVlIHRpZW5lIGRlcmVjaG8gYSBvdG9yZ2FyIGxvcyBkZXJlY2hvcyBjb250ZW5pZG9zIGVuIGVzdGEgbGljZW5jaWEuIFRhbWJpw6luIGRlY2xhcmEgcXVlIHN1IGVudsOtbywgYSBzdSBsZWFsIHNhYmVyIHkgZW50ZW5kZXIsIG5vIGluZnJpbmdlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBuYWRpZS4KClNpIGVsIGVudsOtbyBjb250aWVuZSBtYXRlcmlhbCBzb2JyZSBlbCBjdWFsIHVzdGVkIG5vIHBvc2VlIGRlcmVjaG9zIGRlIGF1dG9yLCBkZWNsYXJhIHF1ZSBoYSBvYnRlbmlkbyBlbCBwZXJtaXNvIGlsaW1pdGFkbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHBhcmEgb3RvcmdhciBhIERTVSBsb3MgZGVyZWNob3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbmNpYSwgeSBxdWUgZGljaG8gbWF0ZXJpYWwgcHJvcGllZGFkIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBkZW50cm8gZGUgZWwgdGV4dG8gbyBjb250ZW5pZG8gZGUgbGEgcHJlc2VudGFjacOzbi4KClNJIEVMIEVOVsONTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBVIE9SR0FOSVpBQ0nDk04gRElTVElOVEEgREUgRFNVLCBVU1RFRCBERUNMQVJBIFFVRSBIQSBDVU1QTElETyBDVUFMUVVJRVIgREVSRUNITyBERSBSRVZJU0nDk04gVSBPVFJBUyBPQkxJR0FDSU9ORVMgUkVRVUVSSURBUyBQT1IgRElDSE8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKRFNVIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBzdShzKSBub21icmUocykgY29tbyBhdXRvcihlcykgbyBwcm9waWV0YXJpbyhzKSBkZWwgZW52w61vIHkgbm8gcmVhbGl6YXLDoSBuaW5ndW5hIGFsdGVyYWNpw7NuIGVuIHN1IGVudsOtbywgc2Fsdm8gbGFzIHBlcm1pdGlkYXMgcG9yIGVzdGEgbGljZW5jaWEuCg== |
| score |
13.806414 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).