Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon
Descripción del Articulo
The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different...
| Autores: | , , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2022 |
| Institución: | Instituto Nacional de Innovación Agraria |
| Repositorio: | INIA-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:null:20.500.12955/2086 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12955/2086 https://doi.org/10.3390/f13050697 |
| Nivel de acceso: | acceso abierto |
| Materia: | Deep learning Artificial neural network Total height Forest management https://purl.org/pe-repo/ocde/ford#4.01.02 Forest management |
| id |
INIA_d74544c6c2afb11c82e05824844b4b30 |
|---|---|
| oai_identifier_str |
oai:null:20.500.12955/2086 |
| network_acronym_str |
INIA |
| network_name_str |
INIA-Institucional |
| repository_id_str |
4830 |
| dc.title.es_PE.fl_str_mv |
Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon |
| title |
Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon |
| spellingShingle |
Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon Goycochea Casas, Gianmarco Deep learning Artificial neural network Total height Forest management https://purl.org/pe-repo/ocde/ford#4.01.02 Forest management |
| title_short |
Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon |
| title_full |
Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon |
| title_fullStr |
Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon |
| title_full_unstemmed |
Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon |
| title_sort |
Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon |
| author |
Goycochea Casas, Gianmarco |
| author_facet |
Goycochea Casas, Gianmarco Elera Gonzáles, Duberlí Geomar Baselly Villanueva, Juan Rodrigo Pereira Fardin, Leonardo Garcia Leite, Hélio |
| author_role |
author |
| author2 |
Elera Gonzáles, Duberlí Geomar Baselly Villanueva, Juan Rodrigo Pereira Fardin, Leonardo Garcia Leite, Hélio |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Goycochea Casas, Gianmarco Elera Gonzáles, Duberlí Geomar Baselly Villanueva, Juan Rodrigo Pereira Fardin, Leonardo Garcia Leite, Hélio |
| dc.subject.es_PE.fl_str_mv |
Deep learning Artificial neural network Total height Forest management |
| topic |
Deep learning Artificial neural network Total height Forest management https://purl.org/pe-repo/ocde/ford#4.01.02 Forest management |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.02 |
| dc.subject.agrovoc.en.fl_str_mv |
Forest management |
| description |
The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different hypsometric modeling techniques. Currently, machine learning techniques, especially artificial neural networks, have revolutionized modeling for forest management, obtaining more accurate predictions; it is because we understand that it is of the utmost importance to adapt, evaluate and apply these methods in this species for large areas. The objective of this study was to build and evaluate the efficiency of the use of a deep neural network for the prediction of the total height of Guazuma crinita Mart. from a large-scale continuous forest inventory. To do this, we explore different configurations of the hidden layer hyperparameters and define the variables according to the function HT = f(x) where HT is the total height as the output variable and x is the input variable(s). Under this criterion, we established three HT relationships: based on the diameter at breast height (DBH), (i) HT = f(DBH); based on DBH and Age, (ii) HT = f(DBH, Age) and based on DBH, Age and Agroclimatic variables, (iii) HT = f(DBH, Age, Agroclimatology), respectively. In total, 24 different configuration models were established for each function, concluding that the deep artificial neural network technique presents a satisfactory performance for the predictions of the total height of Guazuma crinita Mart. for modeling large areas, being the function based on DBH, Age and agroclimatic variables, with a performance validation of RMSE = 0.70, MAE = 0.50, bias% = −0.09 and VAR = 0.49, showed better accuracy than the others. |
| publishDate |
2022 |
| dc.date.accessioned.none.fl_str_mv |
2023-02-23T15:25:15Z |
| dc.date.available.none.fl_str_mv |
2023-02-23T15:25:15Z |
| dc.date.issued.fl_str_mv |
2022-04-29 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Casas, G. G., Gonzáles, D. G. E., Villanueva, J. R. B., Fardin, L. P., & Leite, H. G. (2022). Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon. Forests, 13(5), 697. doi: https://doi.org/10.3390/f13050697 |
| dc.identifier.issn.none.fl_str_mv |
1999-4907 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2086 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/f13050697 |
| identifier_str_mv |
Casas, G. G., Gonzáles, D. G. E., Villanueva, J. R. B., Fardin, L. P., & Leite, H. G. (2022). Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon. Forests, 13(5), 697. doi: https://doi.org/10.3390/f13050697 1999-4907 |
| url |
https://hdl.handle.net/20.500.12955/2086 https://doi.org/10.3390/f13050697 |
| dc.language.iso.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:1999-4907 |
| dc.relation.ispartofseries.en.fl_str_mv |
Forests |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
MDPI |
| dc.publisher.country.none.fl_str_mv |
CH |
| dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
| dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
| instname_str |
Instituto Nacional de Innovación Agraria |
| instacron_str |
INIA |
| institution |
INIA |
| reponame_str |
INIA-Institucional |
| collection |
INIA-Institucional |
| dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
| bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/6a2af735-af50-4ef0-ace8-244ca4d90ed9/download https://repositorio.inia.gob.pe/bitstreams/190ad96a-02d8-4a6d-84a4-cf2640466f35/download https://repositorio.inia.gob.pe/bitstreams/9feefb73-10c3-4648-8ffa-40065d76919b/download https://repositorio.inia.gob.pe/bitstreams/f8d90295-9b59-4ca2-b1a6-74ea5ca0ffb6/download |
| bitstream.checksum.fl_str_mv |
1042a5ce07d44fead90e9823f97d0d66 8a4605be74aa9ea9d79846c1fba20a33 4a49347864d2fa7942544488da5aa278 9ed90337a88559f1bc04c9e209394668 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Institucional INIA |
| repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
| _version_ |
1833331665792925696 |
| spelling |
Goycochea Casas, GianmarcoElera Gonzáles, Duberlí GeomarBaselly Villanueva, Juan RodrigoPereira Fardin, LeonardoGarcia Leite, Hélio2023-02-23T15:25:15Z2023-02-23T15:25:15Z2022-04-29Casas, G. G., Gonzáles, D. G. E., Villanueva, J. R. B., Fardin, L. P., & Leite, H. G. (2022). Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon. Forests, 13(5), 697. doi: https://doi.org/10.3390/f130506971999-4907https://hdl.handle.net/20.500.12955/2086https://doi.org/10.3390/f13050697The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different hypsometric modeling techniques. Currently, machine learning techniques, especially artificial neural networks, have revolutionized modeling for forest management, obtaining more accurate predictions; it is because we understand that it is of the utmost importance to adapt, evaluate and apply these methods in this species for large areas. The objective of this study was to build and evaluate the efficiency of the use of a deep neural network for the prediction of the total height of Guazuma crinita Mart. from a large-scale continuous forest inventory. To do this, we explore different configurations of the hidden layer hyperparameters and define the variables according to the function HT = f(x) where HT is the total height as the output variable and x is the input variable(s). Under this criterion, we established three HT relationships: based on the diameter at breast height (DBH), (i) HT = f(DBH); based on DBH and Age, (ii) HT = f(DBH, Age) and based on DBH, Age and Agroclimatic variables, (iii) HT = f(DBH, Age, Agroclimatology), respectively. In total, 24 different configuration models were established for each function, concluding that the deep artificial neural network technique presents a satisfactory performance for the predictions of the total height of Guazuma crinita Mart. for modeling large areas, being the function based on DBH, Age and agroclimatic variables, with a performance validation of RMSE = 0.70, MAE = 0.50, bias% = −0.09 and VAR = 0.49, showed better accuracy than the others.application/pdfspaMDPICHurn:issn:1999-4907Forestsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIADeep learningArtificial neural networkTotal heightForest managementhttps://purl.org/pe-repo/ocde/ford#4.01.02Forest managementConfiguration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazoninfo:eu-repo/semantics/articleORIGINALGoycochea_et-al_2022_forest_management.pdfGoycochea_et-al_2022_forest_management.pdfArtículoapplication/pdf4387725https://repositorio.inia.gob.pe/bitstreams/6a2af735-af50-4ef0-ace8-244ca4d90ed9/download1042a5ce07d44fead90e9823f97d0d66MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/190ad96a-02d8-4a6d-84a4-cf2640466f35/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTGoycochea_et-al_2022_forest_management.pdf.txtGoycochea_et-al_2022_forest_management.pdf.txtExtracted texttext/plain52895https://repositorio.inia.gob.pe/bitstreams/9feefb73-10c3-4648-8ffa-40065d76919b/download4a49347864d2fa7942544488da5aa278MD53THUMBNAILGoycochea_et-al_2022_forest_management.pdf.jpgGoycochea_et-al_2022_forest_management.pdf.jpgGenerated Thumbnailimage/jpeg1645https://repositorio.inia.gob.pe/bitstreams/f8d90295-9b59-4ca2-b1a6-74ea5ca0ffb6/download9ed90337a88559f1bc04c9e209394668MD5420.500.12955/2086oai:repositorio.inia.gob.pe:20.500.12955/20862023-06-21 10:39:46.142https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.9573765 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).