​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​

Descripción del Articulo

​​The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different...

Descripción completa

Detalles Bibliográficos
Autores: Goycochea Casas, Gianmarco, Elera Gonzáles, Duberlí Geomar, Baselly Villanueva, Juan Rodrigo, Pereira Fardin, Leonardo, Garcia Leite, Hélio
Formato: artículo
Fecha de Publicación:2022
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:español
OAI Identifier:oai:null:20.500.12955/2086
Enlace del recurso:https://hdl.handle.net/20.500.12955/2086
https://doi.org/10.3390/f13050697
Nivel de acceso:acceso abierto
Materia:​​Deep learning
​Artificial neural network
​Total height
​Forest management​
https://purl.org/pe-repo/ocde/ford#4.01.02
Forest management
id INIA_d74544c6c2afb11c82e05824844b4b30
oai_identifier_str oai:null:20.500.12955/2086
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​
title ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​
spellingShingle ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​
Goycochea Casas, Gianmarco
​​Deep learning
​Artificial neural network
​Total height
​Forest management​
https://purl.org/pe-repo/ocde/ford#4.01.02
Forest management
title_short ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​
title_full ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​
title_fullStr ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​
title_full_unstemmed ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​
title_sort ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​
author Goycochea Casas, Gianmarco
author_facet Goycochea Casas, Gianmarco
Elera Gonzáles, Duberlí Geomar
Baselly Villanueva, Juan Rodrigo
Pereira Fardin, Leonardo
Garcia Leite, Hélio
author_role author
author2 Elera Gonzáles, Duberlí Geomar
Baselly Villanueva, Juan Rodrigo
Pereira Fardin, Leonardo
Garcia Leite, Hélio
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Goycochea Casas, Gianmarco
Elera Gonzáles, Duberlí Geomar
Baselly Villanueva, Juan Rodrigo
Pereira Fardin, Leonardo
Garcia Leite, Hélio
dc.subject.es_PE.fl_str_mv ​​Deep learning
​Artificial neural network
​Total height
​Forest management​
topic ​​Deep learning
​Artificial neural network
​Total height
​Forest management​
https://purl.org/pe-repo/ocde/ford#4.01.02
Forest management
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.02
dc.subject.agrovoc.en.fl_str_mv Forest management
description ​​The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different hypsometric modeling techniques. Currently, machine learning techniques, especially artificial neural networks, have revolutionized modeling for forest management, obtaining more accurate predictions; it is because we understand that it is of the utmost importance to adapt, evaluate and apply these methods in this species for large areas. The objective of this study was to build and evaluate the efficiency of the use of a deep neural network for the prediction of the total height of Guazuma crinita Mart. from a large-scale continuous forest inventory. To do this, we explore different configurations of the hidden layer hyperparameters and define the variables according to the function HT = f(x) where HT is the total height as the output variable and x is the input variable(s). Under this criterion, we established three HT relationships: based on the diameter at breast height (DBH), (i) HT = f(DBH); based on DBH and Age, (ii) HT = f(DBH, Age) and based on DBH, Age and Agroclimatic variables, (iii) HT = f(DBH, Age, Agroclimatology), respectively. In total, 24 different configuration models were established for each function, concluding that the deep artificial neural network technique presents a satisfactory performance for the predictions of the total height of Guazuma crinita Mart. for modeling large areas, being the function based on DBH, Age and agroclimatic variables, with a performance validation of RMSE = 0.70, MAE = 0.50, bias% = −0.09 and VAR = 0.49, showed better accuracy than the others.​
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2023-02-23T15:25:15Z
dc.date.available.none.fl_str_mv 2023-02-23T15:25:15Z
dc.date.issued.fl_str_mv 2022-04-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv ​​Casas, G. G., Gonzáles, D. G. E., Villanueva, J. R. B., Fardin, L. P., & Leite, H. G. (2022). ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​. Forests, 13(5), 697. doi: https://doi.org/10.3390/f13050697​
dc.identifier.issn.none.fl_str_mv 1999-4907
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2086
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/f13050697
identifier_str_mv ​​Casas, G. G., Gonzáles, D. G. E., Villanueva, J. R. B., Fardin, L. P., & Leite, H. G. (2022). ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​. Forests, 13(5), 697. doi: https://doi.org/10.3390/f13050697​
1999-4907
url https://hdl.handle.net/20.500.12955/2086
https://doi.org/10.3390/f13050697
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv urn:issn:1999-4907
dc.relation.ispartofseries.en.fl_str_mv ​​Forests​
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv ​​https://creativecommons.org/licenses/by/4.0/​
eu_rights_str_mv openAccess
rights_invalid_str_mv ​​https://creativecommons.org/licenses/by/4.0/​
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.none.fl_str_mv CH
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/6a2af735-af50-4ef0-ace8-244ca4d90ed9/download
https://repositorio.inia.gob.pe/bitstreams/190ad96a-02d8-4a6d-84a4-cf2640466f35/download
https://repositorio.inia.gob.pe/bitstreams/9feefb73-10c3-4648-8ffa-40065d76919b/download
https://repositorio.inia.gob.pe/bitstreams/f8d90295-9b59-4ca2-b1a6-74ea5ca0ffb6/download
bitstream.checksum.fl_str_mv 1042a5ce07d44fead90e9823f97d0d66
8a4605be74aa9ea9d79846c1fba20a33
4a49347864d2fa7942544488da5aa278
9ed90337a88559f1bc04c9e209394668
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331665792925696
spelling Goycochea Casas, GianmarcoElera Gonzáles, Duberlí GeomarBaselly Villanueva, Juan RodrigoPereira Fardin, LeonardoGarcia Leite, Hélio2023-02-23T15:25:15Z2023-02-23T15:25:15Z2022-04-29​​Casas, G. G., Gonzáles, D. G. E., Villanueva, J. R. B., Fardin, L. P., & Leite, H. G. (2022). ​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​. Forests, 13(5), 697. doi: https://doi.org/10.3390/f13050697​1999-4907https://hdl.handle.net/20.500.12955/2086https://doi.org/10.3390/f13050697​​The Guazuma crinita Mart. is a dominant species of great economic importance for the inhabitants of the Peruvian Amazon, standing out for its rapid growth and being harvested at an early age. Understanding its vertical growth is a challenge that researchers have continued to study using different hypsometric modeling techniques. Currently, machine learning techniques, especially artificial neural networks, have revolutionized modeling for forest management, obtaining more accurate predictions; it is because we understand that it is of the utmost importance to adapt, evaluate and apply these methods in this species for large areas. The objective of this study was to build and evaluate the efficiency of the use of a deep neural network for the prediction of the total height of Guazuma crinita Mart. from a large-scale continuous forest inventory. To do this, we explore different configurations of the hidden layer hyperparameters and define the variables according to the function HT = f(x) where HT is the total height as the output variable and x is the input variable(s). Under this criterion, we established three HT relationships: based on the diameter at breast height (DBH), (i) HT = f(DBH); based on DBH and Age, (ii) HT = f(DBH, Age) and based on DBH, Age and Agroclimatic variables, (iii) HT = f(DBH, Age, Agroclimatology), respectively. In total, 24 different configuration models were established for each function, concluding that the deep artificial neural network technique presents a satisfactory performance for the predictions of the total height of Guazuma crinita Mart. for modeling large areas, being the function based on DBH, Age and agroclimatic variables, with a performance validation of RMSE = 0.70, MAE = 0.50, bias% = −0.09 and VAR = 0.49, showed better accuracy than the others.​application/pdfspaMDPICHurn:issn:1999-4907​​Forests​info:eu-repo/semantics/openAccess​​https://creativecommons.org/licenses/by/4.0/​Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIA​​Deep learning​Artificial neural network​Total height​Forest management​https://purl.org/pe-repo/ocde/ford#4.01.02Forest management​​Configuration of the deep neural network hyperparameters for the hypsometric modeling of the Guazuma crinita Mart. in the Peruvian Amazon​info:eu-repo/semantics/articleORIGINALGoycochea_et-al_2022_forest_management.pdfGoycochea_et-al_2022_forest_management.pdfArtículoapplication/pdf4387725https://repositorio.inia.gob.pe/bitstreams/6a2af735-af50-4ef0-ace8-244ca4d90ed9/download1042a5ce07d44fead90e9823f97d0d66MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/190ad96a-02d8-4a6d-84a4-cf2640466f35/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTGoycochea_et-al_2022_forest_management.pdf.txtGoycochea_et-al_2022_forest_management.pdf.txtExtracted texttext/plain52895https://repositorio.inia.gob.pe/bitstreams/9feefb73-10c3-4648-8ffa-40065d76919b/download4a49347864d2fa7942544488da5aa278MD53THUMBNAILGoycochea_et-al_2022_forest_management.pdf.jpgGoycochea_et-al_2022_forest_management.pdf.jpgGenerated Thumbnailimage/jpeg1645https://repositorio.inia.gob.pe/bitstreams/f8d90295-9b59-4ca2-b1a6-74ea5ca0ffb6/download9ed90337a88559f1bc04c9e209394668MD5420.500.12955/2086oai:repositorio.inia.gob.pe:20.500.12955/20862023-06-21 10:39:46.142​​https://creativecommons.org/licenses/by/4.0/​info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.9573765
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).