Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru

Descripción del Articulo

Rice is cataloged as one of the most widely cultivated crops globally, providing food for a large proportion of the global population. Integrating Geographic Information Systems (GISs), such as unmanned aerial vehicles (UAVs), into agricultural practices offers numerous benefits. UAVs, equipped with...

Descripción completa

Detalles Bibliográficos
Autores: Goigochea Pinchi, Diego, Justino Pinedo, Maikol, Vega Herrera, Sergio Sebastian, Sanchez Ojanasta, Martín, Lobato Galvez, Roiser Honorio, Santillan Gonzales, Manuel Dante, Ganoza Roncal, Jorge Juan, Ore Aquino, Zoila Luz, Agurto Piñarreta, Alex Iván
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2561
Enlace del recurso:https://hdl.handle.net/20.500.12955/2561
https://doi.org/10.3390/agriengineering6030170
Nivel de acceso:acceso abierto
Materia:Multiple regressions
Remote Sensing
Precision agriculture
RPAS
Drones
San Martin
Oryza sativa
https://purl.org/pe-repo/ocde/ford#4.01.01
Regression analysis
Análisis de la regresión
Remote sensing
Teledetección
Agricultura de precisión
Unmanned aerial vehicles
Vehículo aéreo no tripulado
id INIA_7457adde0bf3537a5e328167d19a0d38
oai_identifier_str oai:null:20.500.12955/2561
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
title Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
spellingShingle Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
Goigochea Pinchi, Diego
Multiple regressions
Remote Sensing
Precision agriculture
RPAS
Drones
San Martin
Oryza sativa
https://purl.org/pe-repo/ocde/ford#4.01.01
Regression analysis
Análisis de la regresión
Remote sensing
Teledetección
Precision agriculture
Agricultura de precisión
Unmanned aerial vehicles
Vehículo aéreo no tripulado
Oryza sativa
title_short Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
title_full Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
title_fullStr Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
title_full_unstemmed Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
title_sort Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
author Goigochea Pinchi, Diego
author_facet Goigochea Pinchi, Diego
Justino Pinedo, Maikol
Vega Herrera, Sergio Sebastian
Sanchez Ojanasta, Martín
Lobato Galvez, Roiser Honorio
Santillan Gonzales, Manuel Dante
Ganoza Roncal, Jorge Juan
Ore Aquino, Zoila Luz
Agurto Piñarreta, Alex Iván
author_role author
author2 Justino Pinedo, Maikol
Vega Herrera, Sergio Sebastian
Sanchez Ojanasta, Martín
Lobato Galvez, Roiser Honorio
Santillan Gonzales, Manuel Dante
Ganoza Roncal, Jorge Juan
Ore Aquino, Zoila Luz
Agurto Piñarreta, Alex Iván
author2_role author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Goigochea Pinchi, Diego
Justino Pinedo, Maikol
Vega Herrera, Sergio Sebastian
Sanchez Ojanasta, Martín
Lobato Galvez, Roiser Honorio
Santillan Gonzales, Manuel Dante
Ganoza Roncal, Jorge Juan
Ore Aquino, Zoila Luz
Agurto Piñarreta, Alex Iván
dc.subject.es_PE.fl_str_mv Multiple regressions
Remote Sensing
Precision agriculture
RPAS
Drones
San Martin
Oryza sativa
topic Multiple regressions
Remote Sensing
Precision agriculture
RPAS
Drones
San Martin
Oryza sativa
https://purl.org/pe-repo/ocde/ford#4.01.01
Regression analysis
Análisis de la regresión
Remote sensing
Teledetección
Precision agriculture
Agricultura de precisión
Unmanned aerial vehicles
Vehículo aéreo no tripulado
Oryza sativa
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.01
dc.subject.agrovoc.es_PE.fl_str_mv Regression analysis
Análisis de la regresión
Remote sensing
Teledetección
Precision agriculture
Agricultura de precisión
Unmanned aerial vehicles
Vehículo aéreo no tripulado
Oryza sativa
description Rice is cataloged as one of the most widely cultivated crops globally, providing food for a large proportion of the global population. Integrating Geographic Information Systems (GISs), such as unmanned aerial vehicles (UAVs), into agricultural practices offers numerous benefits. UAVs, equipped with imaging sensors and geolocation technology, enable precise crop monitoring and management, enhancing yield and efficiency. However, Peru lacks sufficient experience with the application of these technologies, making them somewhat unfamiliar in the context of modern agriculture. In this study, we conducted experiments involving four distinct rice varieties (n = 24) at various stages of growth to predict yield using vegetation indices (VIs). A total of nine VIs (NDVI, GNDVI, ReCL, CIgreen, MCARI, SAVI, CVI, LCI, and EVI) were assessed across four dates: 88, 103, 116, and 130 days after sowing (DAS). Pearson correlation analysis, principal component analysis (PCA), and multiple linear regression were used to build prediction models. The results showed a general prediction model (including all the varieties) with the best performance at 130 days after sowing (DAS) using NDVI, EVI, and SAVI, with a coefficient of determination (adjusted-R2 = 0.43). The prediction models by variety showed the best performance for Esperanza at 88 DAS (adjusted-R2 = 0.94) using EVI as the vegetation index. The other varieties showed their best performance using different indices at different times: Capirona (LCI and CIgreen, 130 DAS, adjusted-R2 = 0.62); Conquista Certificada (MCARI, 116 DAS, R2 = 0.52); and Conquista Registrada (CVI and LCI, 116 DAS, adjusted-R2 = 0.79). These results provide critical information for optimizing rice crop management and support the use of unmanned aerial vehicles (UAVs) to inform timely decision making and mitigate yield losses in Peruvian agriculture.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-28T05:38:27Z
dc.date.available.none.fl_str_mv 2024-08-28T05:38:27Z
dc.date.issued.fl_str_mv 2024-08-20
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Goigochea-Pinchi, D.; Justino-Pinedo, M.; Vega-Herrera, S.S.; Sanchez-Ojanasta, M.; Lobato-Galvez, R.H.; Santillan-Gonzales, M.D.; Ganoza-Roncal, J.J.; Ore-Aquino, Z.L. & Agurto-Piñarreta, A.I. (2024). Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru. AgriEngineering, 6(3), 2955-2969. doi:10.3390/agriengineering6030170
dc.identifier.issn.none.fl_str_mv 2624-7402
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2561
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/agriengineering6030170
identifier_str_mv Goigochea-Pinchi, D.; Justino-Pinedo, M.; Vega-Herrera, S.S.; Sanchez-Ojanasta, M.; Lobato-Galvez, R.H.; Santillan-Gonzales, M.D.; Ganoza-Roncal, J.J.; Ore-Aquino, Z.L. & Agurto-Piñarreta, A.I. (2024). Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru. AgriEngineering, 6(3), 2955-2969. doi:10.3390/agriengineering6030170
2624-7402
url https://hdl.handle.net/20.500.12955/2561
https://doi.org/10.3390/agriengineering6030170
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv urn:issn:2624-7402
dc.relation.ispartofseries.es_PE.fl_str_mv AgriEngineering
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/5b73b540-7d04-4565-8a5d-eeb5bd635914/download
https://repositorio.inia.gob.pe/bitstreams/11ebd048-df68-4666-bf7b-6b8aeca16edd/download
https://repositorio.inia.gob.pe/bitstreams/c3d84994-e961-4aa2-9165-8640fc947f9d/download
https://repositorio.inia.gob.pe/bitstreams/000511b9-6f97-4c2e-937a-e9da43fe5df1/download
bitstream.checksum.fl_str_mv 5033e49d00208870b93b548933194032
8a4605be74aa9ea9d79846c1fba20a33
4e44580037a24f2815ffff3b6005f11c
3b468e1ac907675f7933501336dc1423
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331743564759040
spelling Goigochea Pinchi, DiegoJustino Pinedo, MaikolVega Herrera, Sergio SebastianSanchez Ojanasta, MartínLobato Galvez, Roiser HonorioSantillan Gonzales, Manuel DanteGanoza Roncal, Jorge JuanOre Aquino, Zoila LuzAgurto Piñarreta, Alex Iván2024-08-28T05:38:27Z2024-08-28T05:38:27Z2024-08-20Goigochea-Pinchi, D.; Justino-Pinedo, M.; Vega-Herrera, S.S.; Sanchez-Ojanasta, M.; Lobato-Galvez, R.H.; Santillan-Gonzales, M.D.; Ganoza-Roncal, J.J.; Ore-Aquino, Z.L. & Agurto-Piñarreta, A.I. (2024). Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru. AgriEngineering, 6(3), 2955-2969. doi:10.3390/agriengineering60301702624-7402https://hdl.handle.net/20.500.12955/2561https://doi.org/10.3390/agriengineering6030170Rice is cataloged as one of the most widely cultivated crops globally, providing food for a large proportion of the global population. Integrating Geographic Information Systems (GISs), such as unmanned aerial vehicles (UAVs), into agricultural practices offers numerous benefits. UAVs, equipped with imaging sensors and geolocation technology, enable precise crop monitoring and management, enhancing yield and efficiency. However, Peru lacks sufficient experience with the application of these technologies, making them somewhat unfamiliar in the context of modern agriculture. In this study, we conducted experiments involving four distinct rice varieties (n = 24) at various stages of growth to predict yield using vegetation indices (VIs). A total of nine VIs (NDVI, GNDVI, ReCL, CIgreen, MCARI, SAVI, CVI, LCI, and EVI) were assessed across four dates: 88, 103, 116, and 130 days after sowing (DAS). Pearson correlation analysis, principal component analysis (PCA), and multiple linear regression were used to build prediction models. The results showed a general prediction model (including all the varieties) with the best performance at 130 days after sowing (DAS) using NDVI, EVI, and SAVI, with a coefficient of determination (adjusted-R2 = 0.43). The prediction models by variety showed the best performance for Esperanza at 88 DAS (adjusted-R2 = 0.94) using EVI as the vegetation index. The other varieties showed their best performance using different indices at different times: Capirona (LCI and CIgreen, 130 DAS, adjusted-R2 = 0.62); Conquista Certificada (MCARI, 116 DAS, R2 = 0.52); and Conquista Registrada (CVI and LCI, 116 DAS, adjusted-R2 = 0.79). These results provide critical information for optimizing rice crop management and support the use of unmanned aerial vehicles (UAVs) to inform timely decision making and mitigate yield losses in Peruvian agriculture.This research was funded by the project “Creación del servicio de agricultura de precisión en los Departamentos de Lambayeque, Huancavelica, Ucayali y San Martín” of the Instituto Nacional de Innovación Agraria (INIA), which is part of the Ministerio de Desarrollo Agrario y Riego (MIDAGRI) of the Peruvian Government, with grant number CUI 2449640.application/pdfengMDPICHurn:issn:2624-7402AgriEngineeringinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAMultiple regressionsRemote SensingPrecision agricultureRPASDronesSan MartinOryza sativahttps://purl.org/pe-repo/ocde/ford#4.01.01Regression analysisAnálisis de la regresiónRemote sensingTeledetecciónPrecision agricultureAgricultura de precisiónUnmanned aerial vehiclesVehículo aéreo no tripuladoOryza sativaYield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peruinfo:eu-repo/semantics/articleORIGINALGoicochea_et-al_2024_Yield_Prediction_Rice.pdfGoicochea_et-al_2024_Yield_Prediction_Rice.pdfapplication/pdf5171516https://repositorio.inia.gob.pe/bitstreams/5b73b540-7d04-4565-8a5d-eeb5bd635914/download5033e49d00208870b93b548933194032MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/11ebd048-df68-4666-bf7b-6b8aeca16edd/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTGoicochea_et-al_2024_Yield_Prediction_Rice.pdf.txtGoicochea_et-al_2024_Yield_Prediction_Rice.pdf.txtExtracted texttext/plain47105https://repositorio.inia.gob.pe/bitstreams/c3d84994-e961-4aa2-9165-8640fc947f9d/download4e44580037a24f2815ffff3b6005f11cMD53THUMBNAILGoicochea_et-al_2024_Yield_Prediction_Rice.pdf.jpgGoicochea_et-al_2024_Yield_Prediction_Rice.pdf.jpgGenerated Thumbnailimage/jpeg1602https://repositorio.inia.gob.pe/bitstreams/000511b9-6f97-4c2e-937a-e9da43fe5df1/download3b468e1ac907675f7933501336dc1423MD5420.500.12955/2561oai:repositorio.inia.gob.pe:20.500.12955/25612024-08-28 00:38:28.6https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.754011
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).