Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru
Descripción del Articulo
Rice is cataloged as one of the most widely cultivated crops globally, providing food for a large proportion of the global population. Integrating Geographic Information Systems (GISs), such as unmanned aerial vehicles (UAVs), into agricultural practices offers numerous benefits. UAVs, equipped with...
Autores: | , , , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Instituto Nacional de Innovación Agraria |
Repositorio: | INIA-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:null:20.500.12955/2561 |
Enlace del recurso: | https://hdl.handle.net/20.500.12955/2561 https://doi.org/10.3390/agriengineering6030170 |
Nivel de acceso: | acceso abierto |
Materia: | Multiple regressions Remote Sensing Precision agriculture RPAS Drones San Martin Oryza sativa https://purl.org/pe-repo/ocde/ford#4.01.01 Regression analysis Análisis de la regresión Remote sensing Teledetección Agricultura de precisión Unmanned aerial vehicles Vehículo aéreo no tripulado |
id |
INIA_7457adde0bf3537a5e328167d19a0d38 |
---|---|
oai_identifier_str |
oai:null:20.500.12955/2561 |
network_acronym_str |
INIA |
network_name_str |
INIA-Institucional |
repository_id_str |
4830 |
dc.title.es_PE.fl_str_mv |
Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru |
title |
Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru |
spellingShingle |
Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru Goigochea Pinchi, Diego Multiple regressions Remote Sensing Precision agriculture RPAS Drones San Martin Oryza sativa https://purl.org/pe-repo/ocde/ford#4.01.01 Regression analysis Análisis de la regresión Remote sensing Teledetección Precision agriculture Agricultura de precisión Unmanned aerial vehicles Vehículo aéreo no tripulado Oryza sativa |
title_short |
Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru |
title_full |
Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru |
title_fullStr |
Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru |
title_full_unstemmed |
Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru |
title_sort |
Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru |
author |
Goigochea Pinchi, Diego |
author_facet |
Goigochea Pinchi, Diego Justino Pinedo, Maikol Vega Herrera, Sergio Sebastian Sanchez Ojanasta, Martín Lobato Galvez, Roiser Honorio Santillan Gonzales, Manuel Dante Ganoza Roncal, Jorge Juan Ore Aquino, Zoila Luz Agurto Piñarreta, Alex Iván |
author_role |
author |
author2 |
Justino Pinedo, Maikol Vega Herrera, Sergio Sebastian Sanchez Ojanasta, Martín Lobato Galvez, Roiser Honorio Santillan Gonzales, Manuel Dante Ganoza Roncal, Jorge Juan Ore Aquino, Zoila Luz Agurto Piñarreta, Alex Iván |
author2_role |
author author author author author author author author |
dc.contributor.author.fl_str_mv |
Goigochea Pinchi, Diego Justino Pinedo, Maikol Vega Herrera, Sergio Sebastian Sanchez Ojanasta, Martín Lobato Galvez, Roiser Honorio Santillan Gonzales, Manuel Dante Ganoza Roncal, Jorge Juan Ore Aquino, Zoila Luz Agurto Piñarreta, Alex Iván |
dc.subject.es_PE.fl_str_mv |
Multiple regressions Remote Sensing Precision agriculture RPAS Drones San Martin Oryza sativa |
topic |
Multiple regressions Remote Sensing Precision agriculture RPAS Drones San Martin Oryza sativa https://purl.org/pe-repo/ocde/ford#4.01.01 Regression analysis Análisis de la regresión Remote sensing Teledetección Precision agriculture Agricultura de precisión Unmanned aerial vehicles Vehículo aéreo no tripulado Oryza sativa |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#4.01.01 |
dc.subject.agrovoc.es_PE.fl_str_mv |
Regression analysis Análisis de la regresión Remote sensing Teledetección Precision agriculture Agricultura de precisión Unmanned aerial vehicles Vehículo aéreo no tripulado Oryza sativa |
description |
Rice is cataloged as one of the most widely cultivated crops globally, providing food for a large proportion of the global population. Integrating Geographic Information Systems (GISs), such as unmanned aerial vehicles (UAVs), into agricultural practices offers numerous benefits. UAVs, equipped with imaging sensors and geolocation technology, enable precise crop monitoring and management, enhancing yield and efficiency. However, Peru lacks sufficient experience with the application of these technologies, making them somewhat unfamiliar in the context of modern agriculture. In this study, we conducted experiments involving four distinct rice varieties (n = 24) at various stages of growth to predict yield using vegetation indices (VIs). A total of nine VIs (NDVI, GNDVI, ReCL, CIgreen, MCARI, SAVI, CVI, LCI, and EVI) were assessed across four dates: 88, 103, 116, and 130 days after sowing (DAS). Pearson correlation analysis, principal component analysis (PCA), and multiple linear regression were used to build prediction models. The results showed a general prediction model (including all the varieties) with the best performance at 130 days after sowing (DAS) using NDVI, EVI, and SAVI, with a coefficient of determination (adjusted-R2 = 0.43). The prediction models by variety showed the best performance for Esperanza at 88 DAS (adjusted-R2 = 0.94) using EVI as the vegetation index. The other varieties showed their best performance using different indices at different times: Capirona (LCI and CIgreen, 130 DAS, adjusted-R2 = 0.62); Conquista Certificada (MCARI, 116 DAS, R2 = 0.52); and Conquista Registrada (CVI and LCI, 116 DAS, adjusted-R2 = 0.79). These results provide critical information for optimizing rice crop management and support the use of unmanned aerial vehicles (UAVs) to inform timely decision making and mitigate yield losses in Peruvian agriculture. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-08-28T05:38:27Z |
dc.date.available.none.fl_str_mv |
2024-08-28T05:38:27Z |
dc.date.issued.fl_str_mv |
2024-08-20 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.es_PE.fl_str_mv |
Goigochea-Pinchi, D.; Justino-Pinedo, M.; Vega-Herrera, S.S.; Sanchez-Ojanasta, M.; Lobato-Galvez, R.H.; Santillan-Gonzales, M.D.; Ganoza-Roncal, J.J.; Ore-Aquino, Z.L. & Agurto-Piñarreta, A.I. (2024). Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru. AgriEngineering, 6(3), 2955-2969. doi:10.3390/agriengineering6030170 |
dc.identifier.issn.none.fl_str_mv |
2624-7402 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12955/2561 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/agriengineering6030170 |
identifier_str_mv |
Goigochea-Pinchi, D.; Justino-Pinedo, M.; Vega-Herrera, S.S.; Sanchez-Ojanasta, M.; Lobato-Galvez, R.H.; Santillan-Gonzales, M.D.; Ganoza-Roncal, J.J.; Ore-Aquino, Z.L. & Agurto-Piñarreta, A.I. (2024). Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru. AgriEngineering, 6(3), 2955-2969. doi:10.3390/agriengineering6030170 2624-7402 |
url |
https://hdl.handle.net/20.500.12955/2561 https://doi.org/10.3390/agriengineering6030170 |
dc.language.iso.es_PE.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.es_PE.fl_str_mv |
urn:issn:2624-7402 |
dc.relation.ispartofseries.es_PE.fl_str_mv |
AgriEngineering |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
MDPI |
dc.publisher.country.es_PE.fl_str_mv |
CH |
dc.source.es_PE.fl_str_mv |
Instituto Nacional de Innovación Agraria |
dc.source.none.fl_str_mv |
reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA |
instname_str |
Instituto Nacional de Innovación Agraria |
instacron_str |
INIA |
institution |
INIA |
reponame_str |
INIA-Institucional |
collection |
INIA-Institucional |
dc.source.uri.es_PE.fl_str_mv |
Repositorio Institucional - INIA |
bitstream.url.fl_str_mv |
https://repositorio.inia.gob.pe/bitstreams/5b73b540-7d04-4565-8a5d-eeb5bd635914/download https://repositorio.inia.gob.pe/bitstreams/11ebd048-df68-4666-bf7b-6b8aeca16edd/download https://repositorio.inia.gob.pe/bitstreams/c3d84994-e961-4aa2-9165-8640fc947f9d/download https://repositorio.inia.gob.pe/bitstreams/000511b9-6f97-4c2e-937a-e9da43fe5df1/download |
bitstream.checksum.fl_str_mv |
5033e49d00208870b93b548933194032 8a4605be74aa9ea9d79846c1fba20a33 4e44580037a24f2815ffff3b6005f11c 3b468e1ac907675f7933501336dc1423 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional INIA |
repository.mail.fl_str_mv |
repositorio@inia.gob.pe |
_version_ |
1833331743564759040 |
spelling |
Goigochea Pinchi, DiegoJustino Pinedo, MaikolVega Herrera, Sergio SebastianSanchez Ojanasta, MartínLobato Galvez, Roiser HonorioSantillan Gonzales, Manuel DanteGanoza Roncal, Jorge JuanOre Aquino, Zoila LuzAgurto Piñarreta, Alex Iván2024-08-28T05:38:27Z2024-08-28T05:38:27Z2024-08-20Goigochea-Pinchi, D.; Justino-Pinedo, M.; Vega-Herrera, S.S.; Sanchez-Ojanasta, M.; Lobato-Galvez, R.H.; Santillan-Gonzales, M.D.; Ganoza-Roncal, J.J.; Ore-Aquino, Z.L. & Agurto-Piñarreta, A.I. (2024). Yield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peru. AgriEngineering, 6(3), 2955-2969. doi:10.3390/agriengineering60301702624-7402https://hdl.handle.net/20.500.12955/2561https://doi.org/10.3390/agriengineering6030170Rice is cataloged as one of the most widely cultivated crops globally, providing food for a large proportion of the global population. Integrating Geographic Information Systems (GISs), such as unmanned aerial vehicles (UAVs), into agricultural practices offers numerous benefits. UAVs, equipped with imaging sensors and geolocation technology, enable precise crop monitoring and management, enhancing yield and efficiency. However, Peru lacks sufficient experience with the application of these technologies, making them somewhat unfamiliar in the context of modern agriculture. In this study, we conducted experiments involving four distinct rice varieties (n = 24) at various stages of growth to predict yield using vegetation indices (VIs). A total of nine VIs (NDVI, GNDVI, ReCL, CIgreen, MCARI, SAVI, CVI, LCI, and EVI) were assessed across four dates: 88, 103, 116, and 130 days after sowing (DAS). Pearson correlation analysis, principal component analysis (PCA), and multiple linear regression were used to build prediction models. The results showed a general prediction model (including all the varieties) with the best performance at 130 days after sowing (DAS) using NDVI, EVI, and SAVI, with a coefficient of determination (adjusted-R2 = 0.43). The prediction models by variety showed the best performance for Esperanza at 88 DAS (adjusted-R2 = 0.94) using EVI as the vegetation index. The other varieties showed their best performance using different indices at different times: Capirona (LCI and CIgreen, 130 DAS, adjusted-R2 = 0.62); Conquista Certificada (MCARI, 116 DAS, R2 = 0.52); and Conquista Registrada (CVI and LCI, 116 DAS, adjusted-R2 = 0.79). These results provide critical information for optimizing rice crop management and support the use of unmanned aerial vehicles (UAVs) to inform timely decision making and mitigate yield losses in Peruvian agriculture.This research was funded by the project “Creación del servicio de agricultura de precisión en los Departamentos de Lambayeque, Huancavelica, Ucayali y San Martín” of the Instituto Nacional de Innovación Agraria (INIA), which is part of the Ministerio de Desarrollo Agrario y Riego (MIDAGRI) of the Peruvian Government, with grant number CUI 2449640.application/pdfengMDPICHurn:issn:2624-7402AgriEngineeringinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIAMultiple regressionsRemote SensingPrecision agricultureRPASDronesSan MartinOryza sativahttps://purl.org/pe-repo/ocde/ford#4.01.01Regression analysisAnálisis de la regresiónRemote sensingTeledetecciónPrecision agricultureAgricultura de precisiónUnmanned aerial vehiclesVehículo aéreo no tripuladoOryza sativaYield prediction models for rice varieties using UAV multispectral imagery in the Amazon lowlands of Peruinfo:eu-repo/semantics/articleORIGINALGoicochea_et-al_2024_Yield_Prediction_Rice.pdfGoicochea_et-al_2024_Yield_Prediction_Rice.pdfapplication/pdf5171516https://repositorio.inia.gob.pe/bitstreams/5b73b540-7d04-4565-8a5d-eeb5bd635914/download5033e49d00208870b93b548933194032MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/11ebd048-df68-4666-bf7b-6b8aeca16edd/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTGoicochea_et-al_2024_Yield_Prediction_Rice.pdf.txtGoicochea_et-al_2024_Yield_Prediction_Rice.pdf.txtExtracted texttext/plain47105https://repositorio.inia.gob.pe/bitstreams/c3d84994-e961-4aa2-9165-8640fc947f9d/download4e44580037a24f2815ffff3b6005f11cMD53THUMBNAILGoicochea_et-al_2024_Yield_Prediction_Rice.pdf.jpgGoicochea_et-al_2024_Yield_Prediction_Rice.pdf.jpgGenerated Thumbnailimage/jpeg1602https://repositorio.inia.gob.pe/bitstreams/000511b9-6f97-4c2e-937a-e9da43fe5df1/download3b468e1ac907675f7933501336dc1423MD5420.500.12955/2561oai:repositorio.inia.gob.pe:20.500.12955/25612024-08-28 00:38:28.6https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.754011 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).