UAV Flight Orientation and Height Influence on Tree Crown Segmentation in Agroforestry Systems

Descripción del Articulo

Precise crown segmentation is essential for assessing structure, competition, and productivity in agroforestry systems, but delineation is challenging due to canopy heterogeneity and variability in aerial imagery. This study analyzes how flight height and orientation affect segmentation accuracy in...

Descripción completa

Detalles Bibliográficos
Autores: Baselly Villanueva, Juan Rodrigo, Fernández Sandoval, Andrés, Pinedo Freyre, Sergio Fernando, Salazar Hinostroza, Evelin Judith, Cárdenas Rengifo, Gloria Patricia, Puerta, Ronald, Huanca Diaz, José Ricardo, Tuesta Cometivos, Gino Anthony, Vallejos Torres, Geomar, Goycochea Casas, Gianmarco, Álvarez Álvarez, Pedro, Ismail, Zool Hilmi
Formato: artículo
Fecha de Publicación:2026
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inia.gob.pe:20.500.12955/2994
Enlace del recurso:http://hdl.handle.net/20.500.12955/2994
https://doi.org/10.3390/f17010087
Nivel de acceso:acceso abierto
Materia:Calycophyllum spruceanum
Cedrelinga cateniformis
Virola pavonis
crown
forest monitoring
Remote sensing
YOLO
Corona
Monitoreo forestal
Teledetección
https://purl.org/pe-repo/ocde/ford#4.01.06
Sistema agroforestal; Agroforestry systems; Teledetección; Remote sensing; Vehículo aéreo no tripulado; Unmanned aerial vehicles; Árbol forestal; Forest tres; Detección; Detection
Descripción
Sumario:Precise crown segmentation is essential for assessing structure, competition, and productivity in agroforestry systems, but delineation is challenging due to canopy heterogeneity and variability in aerial imagery. This study analyzes how flight height and orientation affect segmentation accuracy in an agroforestry system of the Peruvian Amazon, using RGB images acquired with a DJI Mavic Mini 3 Pro UAV and the instance-segmentation models YOLOv8 and YOLOv11. Four flight heights (40, 50, 60, and 70 m) and two orientations (parallel and transversal) were analyzed in an agroforestry system composed of Cedrelinga cateniformis (Ducke) Ducke, Calycophyllum spruceanum (Benth.) Hook.f. ex K.Schum., and Virola pavonis (A.DC.) A.C. Sm. Results showed that a flight height of 60 m provided the highest delineation accuracy (F1 ≈ 0.88 for YOLOv8 and 0.84 for YOLOv11), indicating an optimal balance between resolution and canopy coverage. Although YOLOv8 achieved the highest precision under optimal conditions, it exhibited greater variability with changes in flight geometry. In contrast, YOLOv11 showed a more stable and robust performance, with generalization gaps below 0.02, reflecting a stronger adaptability to different acquisition conditions. At the species level, vertical position and crown morphological differences (Such as symmetry, branching angle, and bifurcation level) directly influenced detection accuracy. Cedrelinga cateniformis displayed dominant and asymmetric crowns; Calycophyllum spruceanum had narrow, co-dominant crowns; and Virola pavonis exhibited symmetrical and intermediate crowns. These traits were associated with the detection and confusion patterns observed across the models, highlighting the importance of crown architecture in automated segmentation and the potential of UAVs combined with YOLO algorithms for the efficient monitoring of tropical agroforestry systems.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).