An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)

Descripción del Articulo

One of the world’s major agricultural crops is rice (Oryza sativa), a staple food for more than half of the global population. In this research, synthetic aperture radar (SAR) and optical images are used to analyze the monthly dynamics of this crop in the lower Utcubamba river basin, Peru. In additi...

Descripción completa

Detalles Bibliográficos
Autores: Medina Medina, Angel James, Salas López, Rolando, Zabaleta Santisteban, Jhon Antony, Tuesta Trauco, Katerin Meliza, Turpo Cayo, Efrain Yury, Huaman Haro, Nixon, Oliva Cruz, Manuel, Gómez Fernández, Darwin
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Nacional de Innovación Agraria
Repositorio:INIA-Institucional
Lenguaje:inglés
OAI Identifier:oai:null:20.500.12955/2466
Enlace del recurso:https://hdl.handle.net/20.500.12955/2466
https://doi.org/10.3390/agronomy14030557
Nivel de acceso:acceso abierto
Materia:SAR
Rice
Monitoring
Changes
https://purl.org/pe-repo/ocde/ford#4.01.06
SAR (radar)
Radar de abertura sintética
Vigilancia
Oryza sativa
Arroz
id INIA_122c455b34fe97bee6fca2ac62efca6a
oai_identifier_str oai:null:20.500.12955/2466
network_acronym_str INIA
network_name_str INIA-Institucional
repository_id_str 4830
dc.title.es_PE.fl_str_mv An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
title An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
spellingShingle An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
Medina Medina, Angel James
SAR
Rice
Monitoring
Changes
https://purl.org/pe-repo/ocde/ford#4.01.06
SAR (radar)
Radar de abertura sintética
Monitoring
Vigilancia
Oryza sativa
Rice
Arroz
title_short An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
title_full An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
title_fullStr An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
title_full_unstemmed An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
title_sort An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
author Medina Medina, Angel James
author_facet Medina Medina, Angel James
Salas López, Rolando
Zabaleta Santisteban, Jhon Antony
Tuesta Trauco, Katerin Meliza
Turpo Cayo, Efrain Yury
Huaman Haro, Nixon
Oliva Cruz, Manuel
Gómez Fernández, Darwin
author_role author
author2 Salas López, Rolando
Zabaleta Santisteban, Jhon Antony
Tuesta Trauco, Katerin Meliza
Turpo Cayo, Efrain Yury
Huaman Haro, Nixon
Oliva Cruz, Manuel
Gómez Fernández, Darwin
author2_role author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Medina Medina, Angel James
Salas López, Rolando
Zabaleta Santisteban, Jhon Antony
Tuesta Trauco, Katerin Meliza
Turpo Cayo, Efrain Yury
Huaman Haro, Nixon
Oliva Cruz, Manuel
Gómez Fernández, Darwin
dc.subject.es_PE.fl_str_mv SAR
Rice
Monitoring
Changes
topic SAR
Rice
Monitoring
Changes
https://purl.org/pe-repo/ocde/ford#4.01.06
SAR (radar)
Radar de abertura sintética
Monitoring
Vigilancia
Oryza sativa
Rice
Arroz
dc.subject.ocde.es_PE.fl_str_mv https://purl.org/pe-repo/ocde/ford#4.01.06
dc.subject.agrovoc.es_PE.fl_str_mv SAR (radar)
Radar de abertura sintética
Monitoring
Vigilancia
Oryza sativa
Rice
Arroz
description One of the world’s major agricultural crops is rice (Oryza sativa), a staple food for more than half of the global population. In this research, synthetic aperture radar (SAR) and optical images are used to analyze the monthly dynamics of this crop in the lower Utcubamba river basin, Peru. In addition, this study addresses the need to obtain accurate and timely information on the areas under cultivation in order to calculate their agricultural production. To achieve this, SAR sensor and Sentinel-2 optical remote sensing images were integrated using computer technology, and the monthly dynamics of the rice crops were analyzed through mapping and geometric calculation of the surveyed areas. An algorithm was developed on the Google Earth Engine (GEE) virtual platform for the classification of the Sentinel-1 and Sentinel-2 images and a combination of both, the result of which was improved in ArcGIS Pro software version 3.0.1 using a spatial filter to reduce the “salt and pepper” effect. A total of 168 SAR images and 96 optical images were obtained, corrected, and classified using machine learning algorithms, achieving a monthly average accuracy of 96.4% and 0.951 with respect to the overall accuracy (OA) and Kappa Index (KI), respectively, in the year 2019. For the year 2020, the monthly averages were 94.4% for the OA and 0.922 for the KI. Thus, optical and SAR data offer excellent integration to address the information gaps between them, are of great importance to obtaining more robust products, and can be applied to improving agricultural production planning and management.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-04-02T17:01:35Z
dc.date.available.none.fl_str_mv 2024-04-02T17:01:35Z
dc.date.issued.fl_str_mv 2024-03-08
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.es_PE.fl_str_mv Medina, A.; Salas, R.; Zabaleta, J.; Tuesta, K.; Turpo, E.; Huaman, N.; Oliva, M.; & Gómez, D. (2024). An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE). Agronomy, 14(3), 557. doi: 10.3390/agronomy14030557
dc.identifier.issn.none.fl_str_mv 2073-4395
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12955/2466
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/agronomy14030557
identifier_str_mv Medina, A.; Salas, R.; Zabaleta, J.; Tuesta, K.; Turpo, E.; Huaman, N.; Oliva, M.; & Gómez, D. (2024). An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE). Agronomy, 14(3), 557. doi: 10.3390/agronomy14030557
2073-4395
url https://hdl.handle.net/20.500.12955/2466
https://doi.org/10.3390/agronomy14030557
dc.language.iso.es_PE.fl_str_mv eng
language eng
dc.relation.ispartof.es_PE.fl_str_mv urn:issn:2073-4395
dc.relation.ispartofseries.es_PE.fl_str_mv Agronomy
dc.rights.es_PE.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_PE.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.es_PE.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv MDPI
dc.publisher.country.es_PE.fl_str_mv CH
dc.source.es_PE.fl_str_mv Instituto Nacional de Innovación Agraria
dc.source.none.fl_str_mv reponame:INIA-Institucional
instname:Instituto Nacional de Innovación Agraria
instacron:INIA
instname_str Instituto Nacional de Innovación Agraria
instacron_str INIA
institution INIA
reponame_str INIA-Institucional
collection INIA-Institucional
dc.source.uri.es_PE.fl_str_mv Repositorio Institucional - INIA
bitstream.url.fl_str_mv https://repositorio.inia.gob.pe/bitstreams/581f8a96-38bd-4c90-a997-9724e98e940e/download
https://repositorio.inia.gob.pe/bitstreams/d020e826-cc9f-4934-81f1-33a33269a260/download
https://repositorio.inia.gob.pe/bitstreams/490a3a74-b643-4da7-bded-646a30bebfbc/download
https://repositorio.inia.gob.pe/bitstreams/361d9d2b-0533-4750-acc5-f56876f267db/download
bitstream.checksum.fl_str_mv 60a9ac1caf1d4b89539ad6346e8f3dd7
8a4605be74aa9ea9d79846c1fba20a33
069125b0d52aa4453eeef4341c4148af
8b47e30630de173ae039eebb1de12d4c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional INIA
repository.mail.fl_str_mv repositorio@inia.gob.pe
_version_ 1833331617241759744
spelling Medina Medina, Angel JamesSalas López, RolandoZabaleta Santisteban, Jhon AntonyTuesta Trauco, Katerin MelizaTurpo Cayo, Efrain YuryHuaman Haro, NixonOliva Cruz, ManuelGómez Fernández, Darwin2024-04-02T17:01:35Z2024-04-02T17:01:35Z2024-03-08Medina, A.; Salas, R.; Zabaleta, J.; Tuesta, K.; Turpo, E.; Huaman, N.; Oliva, M.; & Gómez, D. (2024). An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE). Agronomy, 14(3), 557. doi: 10.3390/agronomy140305572073-4395https://hdl.handle.net/20.500.12955/2466https://doi.org/10.3390/agronomy14030557One of the world’s major agricultural crops is rice (Oryza sativa), a staple food for more than half of the global population. In this research, synthetic aperture radar (SAR) and optical images are used to analyze the monthly dynamics of this crop in the lower Utcubamba river basin, Peru. In addition, this study addresses the need to obtain accurate and timely information on the areas under cultivation in order to calculate their agricultural production. To achieve this, SAR sensor and Sentinel-2 optical remote sensing images were integrated using computer technology, and the monthly dynamics of the rice crops were analyzed through mapping and geometric calculation of the surveyed areas. An algorithm was developed on the Google Earth Engine (GEE) virtual platform for the classification of the Sentinel-1 and Sentinel-2 images and a combination of both, the result of which was improved in ArcGIS Pro software version 3.0.1 using a spatial filter to reduce the “salt and pepper” effect. A total of 168 SAR images and 96 optical images were obtained, corrected, and classified using machine learning algorithms, achieving a monthly average accuracy of 96.4% and 0.951 with respect to the overall accuracy (OA) and Kappa Index (KI), respectively, in the year 2019. For the year 2020, the monthly averages were 94.4% for the OA and 0.922 for the KI. Thus, optical and SAR data offer excellent integration to address the information gaps between them, are of great importance to obtaining more robust products, and can be applied to improving agricultural production planning and management.application/pdfengMDPICHurn:issn:2073-4395Agronomyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIASARRiceMonitoringChangeshttps://purl.org/pe-repo/ocde/ford#4.01.06SAR (radar)Radar de abertura sintéticaMonitoringVigilanciaOryza sativaRiceArrozAn analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)info:eu-repo/semantics/articleORIGINALMedina_et-al_2024_rice_cultivation.pdfMedina_et-al_2024_rice_cultivation.pdfapplication/pdf32785221https://repositorio.inia.gob.pe/bitstreams/581f8a96-38bd-4c90-a997-9724e98e940e/download60a9ac1caf1d4b89539ad6346e8f3dd7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/d020e826-cc9f-4934-81f1-33a33269a260/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTMedina_et-al_2024_rice_cultivation.pdf.txtMedina_et-al_2024_rice_cultivation.pdf.txtExtracted texttext/plain55596https://repositorio.inia.gob.pe/bitstreams/490a3a74-b643-4da7-bded-646a30bebfbc/download069125b0d52aa4453eeef4341c4148afMD53THUMBNAILMedina_et-al_2024_rice_cultivation.pdf.jpgMedina_et-al_2024_rice_cultivation.pdf.jpgGenerated Thumbnailimage/jpeg1619https://repositorio.inia.gob.pe/bitstreams/361d9d2b-0533-4750-acc5-f56876f267db/download8b47e30630de173ae039eebb1de12d4cMD5420.500.12955/2466oai:repositorio.inia.gob.pe:20.500.12955/24662024-04-02 12:01:37.153https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.913218
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).