An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)
Descripción del Articulo
        One of the world’s major agricultural crops is rice (Oryza sativa), a staple food for more than half of the global population. In this research, synthetic aperture radar (SAR) and optical images are used to analyze the monthly dynamics of this crop in the lower Utcubamba river basin, Peru. In additi...
              
            
    
                        | Autores: | , , , , , , , | 
|---|---|
| Formato: | artículo | 
| Fecha de Publicación: | 2024 | 
| Institución: | Instituto Nacional de Innovación Agraria | 
| Repositorio: | INIA-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:null:20.500.12955/2466 | 
| Enlace del recurso: | https://hdl.handle.net/20.500.12955/2466 https://doi.org/10.3390/agronomy14030557 | 
| Nivel de acceso: | acceso abierto | 
| Materia: | SAR Rice Monitoring Changes https://purl.org/pe-repo/ocde/ford#4.01.06 SAR (radar) Radar de abertura sintética Vigilancia Oryza sativa Arroz | 
| id | INIA_122c455b34fe97bee6fca2ac62efca6a | 
|---|---|
| oai_identifier_str | oai:null:20.500.12955/2466 | 
| network_acronym_str | INIA | 
| network_name_str | INIA-Institucional | 
| repository_id_str | 4830 | 
| dc.title.es_PE.fl_str_mv | An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE) | 
| title | An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE) | 
| spellingShingle | An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE) Medina Medina, Angel James SAR Rice Monitoring Changes https://purl.org/pe-repo/ocde/ford#4.01.06 SAR (radar) Radar de abertura sintética Monitoring Vigilancia Oryza sativa Rice Arroz | 
| title_short | An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE) | 
| title_full | An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE) | 
| title_fullStr | An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE) | 
| title_full_unstemmed | An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE) | 
| title_sort | An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE) | 
| author | Medina Medina, Angel James | 
| author_facet | Medina Medina, Angel James Salas López, Rolando Zabaleta Santisteban, Jhon Antony Tuesta Trauco, Katerin Meliza Turpo Cayo, Efrain Yury Huaman Haro, Nixon Oliva Cruz, Manuel Gómez Fernández, Darwin | 
| author_role | author | 
| author2 | Salas López, Rolando Zabaleta Santisteban, Jhon Antony Tuesta Trauco, Katerin Meliza Turpo Cayo, Efrain Yury Huaman Haro, Nixon Oliva Cruz, Manuel Gómez Fernández, Darwin | 
| author2_role | author author author author author author author | 
| dc.contributor.author.fl_str_mv | Medina Medina, Angel James Salas López, Rolando Zabaleta Santisteban, Jhon Antony Tuesta Trauco, Katerin Meliza Turpo Cayo, Efrain Yury Huaman Haro, Nixon Oliva Cruz, Manuel Gómez Fernández, Darwin | 
| dc.subject.es_PE.fl_str_mv | SAR Rice Monitoring Changes | 
| topic | SAR Rice Monitoring Changes https://purl.org/pe-repo/ocde/ford#4.01.06 SAR (radar) Radar de abertura sintética Monitoring Vigilancia Oryza sativa Rice Arroz | 
| dc.subject.ocde.es_PE.fl_str_mv | https://purl.org/pe-repo/ocde/ford#4.01.06 | 
| dc.subject.agrovoc.es_PE.fl_str_mv | SAR (radar) Radar de abertura sintética Monitoring Vigilancia Oryza sativa Rice Arroz | 
| description | One of the world’s major agricultural crops is rice (Oryza sativa), a staple food for more than half of the global population. In this research, synthetic aperture radar (SAR) and optical images are used to analyze the monthly dynamics of this crop in the lower Utcubamba river basin, Peru. In addition, this study addresses the need to obtain accurate and timely information on the areas under cultivation in order to calculate their agricultural production. To achieve this, SAR sensor and Sentinel-2 optical remote sensing images were integrated using computer technology, and the monthly dynamics of the rice crops were analyzed through mapping and geometric calculation of the surveyed areas. An algorithm was developed on the Google Earth Engine (GEE) virtual platform for the classification of the Sentinel-1 and Sentinel-2 images and a combination of both, the result of which was improved in ArcGIS Pro software version 3.0.1 using a spatial filter to reduce the “salt and pepper” effect. A total of 168 SAR images and 96 optical images were obtained, corrected, and classified using machine learning algorithms, achieving a monthly average accuracy of 96.4% and 0.951 with respect to the overall accuracy (OA) and Kappa Index (KI), respectively, in the year 2019. For the year 2020, the monthly averages were 94.4% for the OA and 0.922 for the KI. Thus, optical and SAR data offer excellent integration to address the information gaps between them, are of great importance to obtaining more robust products, and can be applied to improving agricultural production planning and management. | 
| publishDate | 2024 | 
| dc.date.accessioned.none.fl_str_mv | 2024-04-02T17:01:35Z | 
| dc.date.available.none.fl_str_mv | 2024-04-02T17:01:35Z | 
| dc.date.issued.fl_str_mv | 2024-03-08 | 
| dc.type.es_PE.fl_str_mv | info:eu-repo/semantics/article | 
| format | article | 
| dc.identifier.citation.es_PE.fl_str_mv | Medina, A.; Salas, R.; Zabaleta, J.; Tuesta, K.; Turpo, E.; Huaman, N.; Oliva, M.; & Gómez, D. (2024). An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE). Agronomy, 14(3), 557. doi: 10.3390/agronomy14030557 | 
| dc.identifier.issn.none.fl_str_mv | 2073-4395 | 
| dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12955/2466 | 
| dc.identifier.doi.none.fl_str_mv | https://doi.org/10.3390/agronomy14030557 | 
| identifier_str_mv | Medina, A.; Salas, R.; Zabaleta, J.; Tuesta, K.; Turpo, E.; Huaman, N.; Oliva, M.; & Gómez, D. (2024). An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE). Agronomy, 14(3), 557. doi: 10.3390/agronomy14030557 2073-4395 | 
| url | https://hdl.handle.net/20.500.12955/2466 https://doi.org/10.3390/agronomy14030557 | 
| dc.language.iso.es_PE.fl_str_mv | eng | 
| language | eng | 
| dc.relation.ispartof.es_PE.fl_str_mv | urn:issn:2073-4395 | 
| dc.relation.ispartofseries.es_PE.fl_str_mv | Agronomy | 
| dc.rights.es_PE.fl_str_mv | info:eu-repo/semantics/openAccess | 
| dc.rights.uri.es_PE.fl_str_mv | https://creativecommons.org/licenses/by/4.0/ | 
| eu_rights_str_mv | openAccess | 
| rights_invalid_str_mv | https://creativecommons.org/licenses/by/4.0/ | 
| dc.format.es_PE.fl_str_mv | application/pdf | 
| dc.publisher.es_PE.fl_str_mv | MDPI | 
| dc.publisher.country.es_PE.fl_str_mv | CH | 
| dc.source.es_PE.fl_str_mv | Instituto Nacional de Innovación Agraria | 
| dc.source.none.fl_str_mv | reponame:INIA-Institucional instname:Instituto Nacional de Innovación Agraria instacron:INIA | 
| instname_str | Instituto Nacional de Innovación Agraria | 
| instacron_str | INIA | 
| institution | INIA | 
| reponame_str | INIA-Institucional | 
| collection | INIA-Institucional | 
| dc.source.uri.es_PE.fl_str_mv | Repositorio Institucional - INIA | 
| bitstream.url.fl_str_mv | https://repositorio.inia.gob.pe/bitstreams/581f8a96-38bd-4c90-a997-9724e98e940e/download https://repositorio.inia.gob.pe/bitstreams/d020e826-cc9f-4934-81f1-33a33269a260/download https://repositorio.inia.gob.pe/bitstreams/490a3a74-b643-4da7-bded-646a30bebfbc/download https://repositorio.inia.gob.pe/bitstreams/361d9d2b-0533-4750-acc5-f56876f267db/download | 
| bitstream.checksum.fl_str_mv | 60a9ac1caf1d4b89539ad6346e8f3dd7 8a4605be74aa9ea9d79846c1fba20a33 069125b0d52aa4453eeef4341c4148af 8b47e30630de173ae039eebb1de12d4c | 
| bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 | 
| repository.name.fl_str_mv | Repositorio Institucional INIA | 
| repository.mail.fl_str_mv | repositorio@inia.gob.pe | 
| _version_ | 1833331617241759744 | 
| spelling | Medina Medina, Angel JamesSalas López, RolandoZabaleta Santisteban, Jhon AntonyTuesta Trauco, Katerin MelizaTurpo Cayo, Efrain YuryHuaman Haro, NixonOliva Cruz, ManuelGómez Fernández, Darwin2024-04-02T17:01:35Z2024-04-02T17:01:35Z2024-03-08Medina, A.; Salas, R.; Zabaleta, J.; Tuesta, K.; Turpo, E.; Huaman, N.; Oliva, M.; & Gómez, D. (2024). An analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE). Agronomy, 14(3), 557. doi: 10.3390/agronomy140305572073-4395https://hdl.handle.net/20.500.12955/2466https://doi.org/10.3390/agronomy14030557One of the world’s major agricultural crops is rice (Oryza sativa), a staple food for more than half of the global population. In this research, synthetic aperture radar (SAR) and optical images are used to analyze the monthly dynamics of this crop in the lower Utcubamba river basin, Peru. In addition, this study addresses the need to obtain accurate and timely information on the areas under cultivation in order to calculate their agricultural production. To achieve this, SAR sensor and Sentinel-2 optical remote sensing images were integrated using computer technology, and the monthly dynamics of the rice crops were analyzed through mapping and geometric calculation of the surveyed areas. An algorithm was developed on the Google Earth Engine (GEE) virtual platform for the classification of the Sentinel-1 and Sentinel-2 images and a combination of both, the result of which was improved in ArcGIS Pro software version 3.0.1 using a spatial filter to reduce the “salt and pepper” effect. A total of 168 SAR images and 96 optical images were obtained, corrected, and classified using machine learning algorithms, achieving a monthly average accuracy of 96.4% and 0.951 with respect to the overall accuracy (OA) and Kappa Index (KI), respectively, in the year 2019. For the year 2020, the monthly averages were 94.4% for the OA and 0.922 for the KI. Thus, optical and SAR data offer excellent integration to address the information gaps between them, are of great importance to obtaining more robust products, and can be applied to improving agricultural production planning and management.application/pdfengMDPICHurn:issn:2073-4395Agronomyinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Instituto Nacional de Innovación AgrariaRepositorio Institucional - INIAreponame:INIA-Institucionalinstname:Instituto Nacional de Innovación Agrariainstacron:INIASARRiceMonitoringChangeshttps://purl.org/pe-repo/ocde/ford#4.01.06SAR (radar)Radar de abertura sintéticaMonitoringVigilanciaOryza sativaRiceArrozAn analysis of the rice-cultivation dynamics in the lower Utcubamba river basin using SAR and optical imagery in Google Earth Engine (GEE)info:eu-repo/semantics/articleORIGINALMedina_et-al_2024_rice_cultivation.pdfMedina_et-al_2024_rice_cultivation.pdfapplication/pdf32785221https://repositorio.inia.gob.pe/bitstreams/581f8a96-38bd-4c90-a997-9724e98e940e/download60a9ac1caf1d4b89539ad6346e8f3dd7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.inia.gob.pe/bitstreams/d020e826-cc9f-4934-81f1-33a33269a260/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTMedina_et-al_2024_rice_cultivation.pdf.txtMedina_et-al_2024_rice_cultivation.pdf.txtExtracted texttext/plain55596https://repositorio.inia.gob.pe/bitstreams/490a3a74-b643-4da7-bded-646a30bebfbc/download069125b0d52aa4453eeef4341c4148afMD53THUMBNAILMedina_et-al_2024_rice_cultivation.pdf.jpgMedina_et-al_2024_rice_cultivation.pdf.jpgGenerated Thumbnailimage/jpeg1619https://repositorio.inia.gob.pe/bitstreams/361d9d2b-0533-4750-acc5-f56876f267db/download8b47e30630de173ae039eebb1de12d4cMD5420.500.12955/2466oai:repositorio.inia.gob.pe:20.500.12955/24662024-04-02 12:01:37.153https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.inia.gob.peRepositorio Institucional INIArepositorio@inia.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= | 
| score | 13.913218 | 
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
 
   
   
             
            