Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implications

Descripción del Articulo

Better knowledge of the biology of breast cancer has allowed the use of new targeted therapies, leading to improved outcome. High-throughput technologies allow deepening into the molecular architecture of breast cancer, integrating different levels of information, which is important if it helps in m...

Descripción completa

Detalles Bibliográficos
Autores: Gámez-Pozo, A, ABerges-Soria, J, Arevalillo, JM, Nanni, P, López-Vacas, R, Navarro, H, Grossmann, J, Castaneda, CA, Main, P, Díaz-Almirón, M, Espinosa, E, Ciruelos, E, Fresno Vara, Á
Formato: artículo
Fecha de Publicación:2015
Institución:Instituto Nacional de Enfermedades Neoplásicas
Repositorio:INEN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.inen.sld.pe:inen/115
Enlace del recurso:https://repositorio.inen.sld.pe/handle/inen/115
Nivel de acceso:acceso abierto
Materia:https://purl.org/pe-repo/ocde/ford#3.02.21
id INEN_3a0ad3a77f6bcc9e2ecf11491242ee76
oai_identifier_str oai:repositorio.inen.sld.pe:inen/115
network_acronym_str INEN
network_name_str INEN-Institucional
repository_id_str .
spelling Gámez-Pozo, AABerges-Soria, JArevalillo, JMNanni, PLópez-Vacas, RNavarro, HGrossmann, JCastaneda, CAMain, PDíaz-Almirón, MEspinosa, ECiruelos, EFresno Vara, Á2024-07-01T16:28:49Z2024-07-01T16:28:49Z2015Better knowledge of the biology of breast cancer has allowed the use of new targeted therapies, leading to improved outcome. High-throughput technologies allow deepening into the molecular architecture of breast cancer, integrating different levels of information, which is important if it helps in making clinical decisions. microRNA (miRNA) and protein expression profiles were obtained from 71 estrogen receptor-positive (ER(+)) and 25 triple-negative breast cancer (TNBC) samples. RNA and proteins obtained from formalin-fixed, paraffin-embedded tumors were analyzed by RT-qPCR and LC/MS-MS, respectively. We applied probabilistic graphical models representing complex biologic systems as networks, confirming that ER(+) and TNBC subtypes are distinct biologic entities. The integration of miRNA and protein expression data unravels molecular processes that can be related to differences in the genesis and clinical evolution of these types of breast cancer. Our results confirm that TNBC has a unique metabolic profile that may be exploited for therapeutic intervention.application/pdf10.1158/0008-5472.CAN-14-1937https://repositorio.inen.sld.pe/handle/inen/115engCancer ResUSAmerican Association for Cancer Research Inc.info:eu-repo/semantics/openAccessdc.rights.uri: https//creativecomons.org/licenses/by/4.0/https://purl.org/pe-repo/ocde/ford#3.02.21Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implicationsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:INEN-Institucionalinstname:Instituto Nacional de Enfermedades Neoplásicasinstacron:INENPublicationORIGINALA Gámez-Pozo 2015.pdfapplication/pdf1293587https://repositorio.inen.sld.pe/bitstreams/797873ea-2077-416b-8b69-a0bec585504f/download96fda95fafb8ce4ce52758f2381a1b47MD51TEXTA Gámez-Pozo 2015.pdf.txtA Gámez-Pozo 2015.pdf.txtExtracted texttext/plain76735https://repositorio.inen.sld.pe/bitstreams/e9fbd9d0-a465-4eef-9a91-070a5e5edb80/download1f25b1392d4f09ec24584ba69110cfc0MD52THUMBNAILA Gámez-Pozo 2015.pdf.jpgA Gámez-Pozo 2015.pdf.jpgGenerated Thumbnailimage/jpeg3619https://repositorio.inen.sld.pe/bitstreams/9bab80ac-e006-459d-b10e-74d7303a6860/download4f4a80ee45329572d61b322bcca2097bMD53inen/115oai:repositorio.inen.sld.pe:inen/1152024-10-24 03:00:20.235dc.rights.uri: https//creativecomons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttps://repositorio.inen.sld.peRepositorio INENrepositorioinendspace@gmail.com
dc.title.none.fl_str_mv Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implications
title Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implications
spellingShingle Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implications
Gámez-Pozo, A
https://purl.org/pe-repo/ocde/ford#3.02.21
title_short Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implications
title_full Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implications
title_fullStr Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implications
title_full_unstemmed Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implications
title_sort Combined Label-Free Quantitative Proteomics and microRNA Expression Analysis of Breast Cancer Unravel Molecular Differences with Clinical Implications
author Gámez-Pozo, A
author_facet Gámez-Pozo, A
ABerges-Soria, J
Arevalillo, JM
Nanni, P
López-Vacas, R
Navarro, H
Grossmann, J
Castaneda, CA
Main, P
Díaz-Almirón, M
Espinosa, E
Ciruelos, E
Fresno Vara, Á
author_role author
author2 ABerges-Soria, J
Arevalillo, JM
Nanni, P
López-Vacas, R
Navarro, H
Grossmann, J
Castaneda, CA
Main, P
Díaz-Almirón, M
Espinosa, E
Ciruelos, E
Fresno Vara, Á
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Gámez-Pozo, A
ABerges-Soria, J
Arevalillo, JM
Nanni, P
López-Vacas, R
Navarro, H
Grossmann, J
Castaneda, CA
Main, P
Díaz-Almirón, M
Espinosa, E
Ciruelos, E
Fresno Vara, Á
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.02.21
topic https://purl.org/pe-repo/ocde/ford#3.02.21
description Better knowledge of the biology of breast cancer has allowed the use of new targeted therapies, leading to improved outcome. High-throughput technologies allow deepening into the molecular architecture of breast cancer, integrating different levels of information, which is important if it helps in making clinical decisions. microRNA (miRNA) and protein expression profiles were obtained from 71 estrogen receptor-positive (ER(+)) and 25 triple-negative breast cancer (TNBC) samples. RNA and proteins obtained from formalin-fixed, paraffin-embedded tumors were analyzed by RT-qPCR and LC/MS-MS, respectively. We applied probabilistic graphical models representing complex biologic systems as networks, confirming that ER(+) and TNBC subtypes are distinct biologic entities. The integration of miRNA and protein expression data unravels molecular processes that can be related to differences in the genesis and clinical evolution of these types of breast cancer. Our results confirm that TNBC has a unique metabolic profile that may be exploited for therapeutic intervention.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2024-07-01T16:28:49Z
dc.date.available.none.fl_str_mv 2024-07-01T16:28:49Z
dc.date.issued.fl_str_mv 2015
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.doi.none.fl_str_mv 10.1158/0008-5472.CAN-14-1937
dc.identifier.uri.none.fl_str_mv https://repositorio.inen.sld.pe/handle/inen/115
identifier_str_mv 10.1158/0008-5472.CAN-14-1937
url https://repositorio.inen.sld.pe/handle/inen/115
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv American Association for Cancer Research Inc.
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv dc.rights.uri: https//creativecomons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv dc.rights.uri: https//creativecomons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Cancer Res
dc.publisher.country.none.fl_str_mv US
publisher.none.fl_str_mv Cancer Res
dc.source.none.fl_str_mv reponame:INEN-Institucional
instname:Instituto Nacional de Enfermedades Neoplásicas
instacron:INEN
instname_str Instituto Nacional de Enfermedades Neoplásicas
instacron_str INEN
institution INEN
reponame_str INEN-Institucional
collection INEN-Institucional
bitstream.url.fl_str_mv https://repositorio.inen.sld.pe/bitstreams/797873ea-2077-416b-8b69-a0bec585504f/download
https://repositorio.inen.sld.pe/bitstreams/e9fbd9d0-a465-4eef-9a91-070a5e5edb80/download
https://repositorio.inen.sld.pe/bitstreams/9bab80ac-e006-459d-b10e-74d7303a6860/download
bitstream.checksum.fl_str_mv 96fda95fafb8ce4ce52758f2381a1b47
1f25b1392d4f09ec24584ba69110cfc0
4f4a80ee45329572d61b322bcca2097b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio INEN
repository.mail.fl_str_mv repositorioinendspace@gmail.com
_version_ 1846876464202383360
score 12.636905
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).