Automatic Multichannel Volcano-Seismic Classification Using Machine Learning and EMD

Descripción del Articulo

This article proposes the design of an automatic classifier using the empirical mode decomposition (EMD) along with machine learning techniques for identifying the five most important types of events of the Ubinas volcano, the most active volcano in Peru. The proposed method uses attributes from tem...

Descripción completa

Detalles Bibliográficos
Autores: Espinoza Lara, Pablo Eduardo, Rolim Fernandes, Carlos Alexandre, Inza Callupe, Lamberto Adolfo, Mars, Jérôme I., Métaxian, Jean-Philippe, Dalla Mura, Mauro, Malfante, Marielle
Formato: artículo
Fecha de Publicación:2020
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/4884
Enlace del recurso:http://hdl.handle.net/20.500.12816/4884
https://doi.org/10.1109/JSTARS.2020.2982714
Nivel de acceso:acceso abierto
Materia:Artificial intelligence
Empirical mode decomposition
Deconvolution
Time domain analysis
Spectral domain analysis
Cepstral analysis
Seismic signal processing
http://purl.org/pe-repo/ocde/ford#1.05.07
http://purl.org/pe-repo/ocde/ford#1.05.00
Descripción
Sumario:This article proposes the design of an automatic classifier using the empirical mode decomposition (EMD) along with machine learning techniques for identifying the five most important types of events of the Ubinas volcano, the most active volcano in Peru. The proposed method uses attributes from temporal, spectral, and cepstral domains, extracted from the EMD of the signals, as well as a set of preprocessing and instrument correction techniques. Due to the fact that multichannel sensors are currently being installed in seismic networks worldwide, the proposed approach uses a multichannel sensor to perform the classification, contrary to the usual approach of the literature of using a single channel. The presented method is scalable to use data from multiple stations with one or more channels. The principal component analysis method is applied to reduce the dimensionality of the feature vector and the supervised classification is carried out by means of several machine learning algorithms, the support vector machine providing the best results. The presented investigation was tested with a large database that has a considerable number of explosion events, measured at the Ubinas volcano, located in Arequipa, Peru. The proposed classification system achieved a success rate of more than 90%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).