Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin

Descripción del Articulo

Precipitation is one of the most difficult variables to estimate using large scale predictors. Over South America (SA), this task is even more challenging, given the complex topography of the Andes. Empirical Statistical Downscaling (ESD) models can be used for this purpose, but such models, applica...

Descripción completa

Detalles Bibliográficos
Autores: Sulca Jota, Juan Carlos, Vuille, Mathias, Timm, Oliver Elison, Dong, Bo, Zubieta Barragán, Ricardo
Formato: artículo
Fecha de Publicación:2021
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/4909
Enlace del recurso:http://hdl.handle.net/20.500.12816/4909
https://doi.org/10.1175/JAMC-D-20-0066.1
Nivel de acceso:acceso abierto
Materia:Atlantic Ocean
Intertropical convergence zone
South America
South Atlantic convergence zone
Tropics
ENSO
Teleconnections
Precipitation
Summer/warm season
https://purl.org/pe-repo/ocde/ford#1.05.09
https://purl.org/pe-repo/ocde/ford#1.05.10
id IGPR_9e46de91ce69cd0bae2877129c3900fc
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/4909
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin
title Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin
spellingShingle Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin
Sulca Jota, Juan Carlos
Atlantic Ocean
Intertropical convergence zone
South America
South Atlantic convergence zone
Tropics
ENSO
Teleconnections
Precipitation
Summer/warm season
https://purl.org/pe-repo/ocde/ford#1.05.09
https://purl.org/pe-repo/ocde/ford#1.05.10
title_short Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin
title_full Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin
title_fullStr Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin
title_full_unstemmed Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin
title_sort Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin
author Sulca Jota, Juan Carlos
author_facet Sulca Jota, Juan Carlos
Vuille, Mathias
Timm, Oliver Elison
Dong, Bo
Zubieta Barragán, Ricardo
author_role author
author2 Vuille, Mathias
Timm, Oliver Elison
Dong, Bo
Zubieta Barragán, Ricardo
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Sulca Jota, Juan Carlos
Vuille, Mathias
Timm, Oliver Elison
Dong, Bo
Zubieta Barragán, Ricardo
dc.subject.none.fl_str_mv Atlantic Ocean
Intertropical convergence zone
South America
South Atlantic convergence zone
Tropics
ENSO
Teleconnections
Precipitation
Summer/warm season
topic Atlantic Ocean
Intertropical convergence zone
South America
South Atlantic convergence zone
Tropics
ENSO
Teleconnections
Precipitation
Summer/warm season
https://purl.org/pe-repo/ocde/ford#1.05.09
https://purl.org/pe-repo/ocde/ford#1.05.10
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.09
https://purl.org/pe-repo/ocde/ford#1.05.10
description Precipitation is one of the most difficult variables to estimate using large scale predictors. Over South America (SA), this task is even more challenging, given the complex topography of the Andes. Empirical Statistical Downscaling (ESD) models can be used for this purpose, but such models, applicable for all of SA, have not yet been developed. To address this issue, we construct an ESD model based on multiple linear regression techniques for the period 1982-2016 that is based on large-scale circulation indices representing tropical Pacific, Atlantic, and South American climate variability, to estimate austral summer (DJF) precipitation over SA. Statistical analyses show that the ESD model can reproduce observed precipitation anomalies over the tropical Andes (Ecuador, Colombia, Peru, and Bolivia), the eastern equatorial Amazon basin, and the central part of the western Argentinian Andes. On a smaller scale, the ESD model also shows good results over the western Cordillera of the Peruvian Andes. The ESD model reproduces anomalously dry conditions over the eastern equatorial Amazon and the wet conditions over Southeastern South America (SESA) during the three extreme El Niño’s 1982/83, 1997/98, and 2015/16. However, it overestimates the observed intensities over SESA. For the central Peruvian Andes as a case study, results further show that the ESD model can correctly reproduce DJF precipitation anomalies over the entire Mantaro basin during the three extreme El Niño episodes. Moreover, multiple experiments with varying predictor combinations of the ESD model corroborate the hypothesis that the interaction between the South Atlantic Convergence Zone (SACZ) and the equatorial Atlantic Ocean provoked the Amazon drought in 2015/16.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-02-11T17:52:46Z
dc.date.available.none.fl_str_mv 2021-02-11T17:52:46Z
dc.date.issued.fl_str_mv 2021-01-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Sulca, J., Vuille, M., Timm, O. E., Dong, B., & Zubieta, R. (2021). Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin.==$Journal of Applied Meteorology and Climatology, 60$==(1), 65-85. https://doi.org/10.1175/JAMC-D-20-0066.1
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/4909
dc.identifier.journal.none.fl_str_mv Journal of Applied Meteorology and Climatology
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1175/JAMC-D-20-0066.1
identifier_str_mv Sulca, J., Vuille, M., Timm, O. E., Dong, B., & Zubieta, R. (2021). Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin.==$Journal of Applied Meteorology and Climatology, 60$==(1), 65-85. https://doi.org/10.1175/JAMC-D-20-0066.1
index-oti2018
Journal of Applied Meteorology and Climatology
url http://hdl.handle.net/20.500.12816/4909
https://doi.org/10.1175/JAMC-D-20-0066.1
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1558-8424
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Meteorological Society
publisher.none.fl_str_mv American Meteorological Society
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/c43eecb7-dee5-45ae-82f6-78b541b94a13/download
https://repositorio.igp.gob.pe/bitstreams/0bc6be08-8579-47bb-bc5b-fb7c41e68757/download
https://repositorio.igp.gob.pe/bitstreams/b83c5776-7388-42ae-83e0-e5682295023f/download
https://repositorio.igp.gob.pe/bitstreams/933fc1a1-916d-4338-8919-30f9f59d2ad8/download
bitstream.checksum.fl_str_mv 97912b4397da607bf04f2fdbb98eddeb
8a4605be74aa9ea9d79846c1fba20a33
cb2286b96a0f72053678b7e142d534fd
b4dcb1ead0382c96502c3a4dcb031c76
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618580391165952
spelling Sulca Jota, Juan CarlosVuille, MathiasTimm, Oliver ElisonDong, BoZubieta Barragán, Ricardo2021-02-11T17:52:46Z2021-02-11T17:52:46Z2021-01-12Sulca, J., Vuille, M., Timm, O. E., Dong, B., & Zubieta, R. (2021). Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basin.==$Journal of Applied Meteorology and Climatology, 60$==(1), 65-85. https://doi.org/10.1175/JAMC-D-20-0066.1index-oti2018http://hdl.handle.net/20.500.12816/4909Journal of Applied Meteorology and Climatologyhttps://doi.org/10.1175/JAMC-D-20-0066.1Precipitation is one of the most difficult variables to estimate using large scale predictors. Over South America (SA), this task is even more challenging, given the complex topography of the Andes. Empirical Statistical Downscaling (ESD) models can be used for this purpose, but such models, applicable for all of SA, have not yet been developed. To address this issue, we construct an ESD model based on multiple linear regression techniques for the period 1982-2016 that is based on large-scale circulation indices representing tropical Pacific, Atlantic, and South American climate variability, to estimate austral summer (DJF) precipitation over SA. Statistical analyses show that the ESD model can reproduce observed precipitation anomalies over the tropical Andes (Ecuador, Colombia, Peru, and Bolivia), the eastern equatorial Amazon basin, and the central part of the western Argentinian Andes. On a smaller scale, the ESD model also shows good results over the western Cordillera of the Peruvian Andes. The ESD model reproduces anomalously dry conditions over the eastern equatorial Amazon and the wet conditions over Southeastern South America (SESA) during the three extreme El Niño’s 1982/83, 1997/98, and 2015/16. However, it overestimates the observed intensities over SESA. For the central Peruvian Andes as a case study, results further show that the ESD model can correctly reproduce DJF precipitation anomalies over the entire Mantaro basin during the three extreme El Niño episodes. Moreover, multiple experiments with varying predictor combinations of the ESD model corroborate the hypothesis that the interaction between the South Atlantic Convergence Zone (SACZ) and the equatorial Atlantic Ocean provoked the Amazon drought in 2015/16.Por paresapplication/pdfengAmerican Meteorological Societyurn:issn:1558-8424info:eu-repo/semantics/openAccessAtlantic OceanIntertropical convergence zoneSouth AmericaSouth Atlantic convergence zoneTropicsENSOTeleconnectionsPrecipitationSummer/warm seasonhttps://purl.org/pe-repo/ocde/ford#1.05.09https://purl.org/pe-repo/ocde/ford#1.05.10Empirical–Statistical Downscaling of austral summer precipitation over South America, with a focus on the central Peruvian Andes and the equatorial Amazon basininfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALSulca_et_al_2021_JAMC.pdfapplication/pdf24302388https://repositorio.igp.gob.pe/bitstreams/c43eecb7-dee5-45ae-82f6-78b541b94a13/download97912b4397da607bf04f2fdbb98eddebMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/0bc6be08-8579-47bb-bc5b-fb7c41e68757/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTSulca_et_al_2021_JAMC.pdf.txtSulca_et_al_2021_JAMC.pdf.txtExtracted texttext/plain2256https://repositorio.igp.gob.pe/bitstreams/b83c5776-7388-42ae-83e0-e5682295023f/downloadcb2286b96a0f72053678b7e142d534fdMD53THUMBNAILSulca_et_al_2021_JAMC.pdf.jpgSulca_et_al_2021_JAMC.pdf.jpgIM Thumbnailimage/jpeg69108https://repositorio.igp.gob.pe/bitstreams/933fc1a1-916d-4338-8919-30f9f59d2ad8/downloadb4dcb1ead0382c96502c3a4dcb031c76MD5420.500.12816/4909oai:repositorio.igp.gob.pe:20.500.12816/49092025-08-19 11:28:23.585open.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.7211075
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).