Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin
Descripción del Articulo
En: Proceedings of Hidrology Days, Colorado State University, USA, March 22-24, 2010, American Geophysical Union (AGU), p. 58-68.
Autor: | |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2010 |
Institución: | Instituto Geofísico del Perú |
Repositorio: | IGP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/943 |
Enlace del recurso: | http://hdl.handle.net/20.500.12816/943 |
Nivel de acceso: | acceso abierto |
Materia: | Weather forecast Atmospheric precipitation Atmospheric temperature Neural networks Mathematical models http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 |
id |
IGPR_8d5a0276ee94696f92be3abbe749a60f |
---|---|
oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/943 |
network_acronym_str |
IGPR |
network_name_str |
IGP-Institucional |
repository_id_str |
4701 |
dc.title.none.fl_str_mv |
Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin |
title |
Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin |
spellingShingle |
Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin Latínez Sotomayor, Karen Alexandra Weather forecast Atmospheric precipitation Atmospheric temperature Neural networks Mathematical models http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 |
title_short |
Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin |
title_full |
Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin |
title_fullStr |
Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin |
title_full_unstemmed |
Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin |
title_sort |
Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin |
author |
Latínez Sotomayor, Karen Alexandra |
author_facet |
Latínez Sotomayor, Karen Alexandra |
author_role |
author |
dc.contributor.author.fl_str_mv |
Latínez Sotomayor, Karen Alexandra |
dc.subject.none.fl_str_mv |
Weather forecast Atmospheric precipitation Atmospheric temperature Neural networks Mathematical models |
topic |
Weather forecast Atmospheric precipitation Atmospheric temperature Neural networks Mathematical models http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.05.00 http://purl.org/pe-repo/ocde/ford#1.05.09 |
description |
En: Proceedings of Hidrology Days, Colorado State University, USA, March 22-24, 2010, American Geophysical Union (AGU), p. 58-68. |
publishDate |
2010 |
dc.date.accessioned.none.fl_str_mv |
2018-03-28T13:17:17Z |
dc.date.available.none.fl_str_mv |
2018-03-28T13:17:17Z |
dc.date.issued.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
dc.identifier.citation.none.fl_str_mv |
Latínez, K. A. (2010). Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin. In Hydrology Days 2010, 58-68. |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/943 |
identifier_str_mv |
Latínez, K. A. (2010). Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin. In Hydrology Days 2010, 58-68. |
url |
http://hdl.handle.net/20.500.12816/943 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licences/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licences/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Cuenca del río Mantaro Perú |
dc.publisher.none.fl_str_mv |
Colorado State University |
publisher.none.fl_str_mv |
Colorado State University |
dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
instname_str |
Instituto Geofísico del Perú |
instacron_str |
IGP |
institution |
IGP |
reponame_str |
IGP-Institucional |
collection |
IGP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/1a32019a-0e19-4bf4-8ee7-9c4f292402b6/download https://repositorio.igp.gob.pe/bitstreams/808657e9-2644-4687-a810-7e44ef0bb1b7/download https://repositorio.igp.gob.pe/bitstreams/bd20ffb7-4b3f-471f-9827-d0246f4d04a5/download https://repositorio.igp.gob.pe/bitstreams/184ed95e-ee91-4cce-8923-705dbdef23f8/download |
bitstream.checksum.fl_str_mv |
a8d8611545295be397d40d721bc39120 930f6bfdae21cbde24d380117f74129c 1b1aae32ecf478d4dc2e19be9a7415b2 ad18adc6fd79f61acd491340d1e22614 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
repository.mail.fl_str_mv |
biblio@igp.gob.pe |
_version_ |
1842618080961757184 |
spelling |
Latínez Sotomayor, Karen AlexandraCuenca del río MantaroPerú2018-03-28T13:17:17Z2018-03-28T13:17:17Z2010Latínez, K. A. (2010). Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basin. In Hydrology Days 2010, 58-68.http://hdl.handle.net/20.500.12816/943En: Proceedings of Hidrology Days, Colorado State University, USA, March 22-24, 2010, American Geophysical Union (AGU), p. 58-68.The Mantaro river basin is an area that is exposed to high climatic variability due to the geography and factors that are not completely known. The agriculture is very important for people who live at and around it. The quality and productivity of the products are related to rainfall and air temperature, commonly farmers sow when their ancestral knowledge indicate it, in many cases the crops were blighted because they have not enough rain or have too low or high temperatures. That is why the farmers need reliable forecasts of precipitation and temperature. This investigation try to do forecast timely and reliable based on global index around the world as predictors. To accomplish this challenge, this investigation used two methods to determine three-month forecasts, using multivariate adaptive regression splines and artificial neural networks backpropagation. Twelve MARS model were estimated for each response variable, each one represent a month. Instead, only one ANNB model was estimated with the same variables because the neural networks need a lot of data. At Huayao; precipitation showed a predictive relative error (PRE) equal to 1.04 for MARS while 2.15 for ANNB; minimum temperature showed a PRE = 0.45 for MARS and PRE = 0.67 for ANNB; maximum temperature showed a PRE = 7.34 for MARS and PRE = 1.41 for ANNB, a high value of PRE for MARS may be due to an unusual value in predictor set at validation stage. At Jauja; the precipitation showed a PRE = 0.62 for MARS and PRE = 1.18 for ANNB; minimum temperature showed a PRE = 0.27 for MARS and PRE = 1.20 for ANNB and; precipitation showed a PRE = 0.66 for MARS and PRE = 3.00 for ANNB. At lower value of PRE, better are the results thus forecasts are more accurate. Then, the validation results showed that MARS models were more accurate than ANNB.application/pdfengColorado State Universityinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licences/by/4.0/Weather forecastAtmospheric precipitationAtmospheric temperatureNeural networksMathematical modelshttp://purl.org/pe-repo/ocde/ford#1.05.00http://purl.org/pe-repo/ocde/ford#1.05.09Comparison of adaptive methods using multivariate regression splines (MARS) and artificial neural networks backpropagation (ANNB) for the forecast of rain and temperatures in the Mantaro river basininfo:eu-repo/semantics/conferenceObjectreponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALLatinez_paperHD2010.pdfLatinez_paperHD2010.pdfapplication/pdf687897https://repositorio.igp.gob.pe/bitstreams/1a32019a-0e19-4bf4-8ee7-9c4f292402b6/downloada8d8611545295be397d40d721bc39120MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8389https://repositorio.igp.gob.pe/bitstreams/808657e9-2644-4687-a810-7e44ef0bb1b7/download930f6bfdae21cbde24d380117f74129cMD52THUMBNAILLatinez_paperHD2010.pdf.jpgLatinez_paperHD2010.pdf.jpgIM Thumbnailimage/jpeg94749https://repositorio.igp.gob.pe/bitstreams/bd20ffb7-4b3f-471f-9827-d0246f4d04a5/download1b1aae32ecf478d4dc2e19be9a7415b2MD53TEXTLatinez_paperHD2010.pdf.txtLatinez_paperHD2010.pdf.txtExtracted texttext/plain16520https://repositorio.igp.gob.pe/bitstreams/184ed95e-ee91-4cce-8923-705dbdef23f8/downloadad18adc6fd79f61acd491340d1e22614MD5420.500.12816/943oai:repositorio.igp.gob.pe:20.500.12816/9432024-10-01 16:35:38.25https://creativecommons.org/licences/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.pePGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy1uZC80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMtbmQvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyIC8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMtbmQvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbC1TaW5EZXJpdmFyIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4= |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).