Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA‑2 data

Descripción del Articulo

The aerosol and precipitable water vapor (PW) distribution over the tropical Andes region is characterized using Aerosol Robotic Network (AERONET) observations at stations in Medellin (Colombia), Quito (Ecuador), Huancayo (Peru), and La Paz (Bolivia). AERONET aerosol optical depth (AOD) is interpret...

Descripción completa

Detalles Bibliográficos
Autores: Cazorla, María, Giles, David M., Herrera, Edgar, Suárez Salas, Luis, Estevan, Rene, Andrade, Marcos, Bastidas, Álvaro
Formato: artículo
Fecha de Publicación:2024
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/5641
Enlace del recurso:http://hdl.handle.net/20.500.12816/5641
https://doi.org/10.1038/s41598-024-51247-9
Nivel de acceso:acceso abierto
Materia:Aerosols
Aerosols optical depth
Tropical Andes
Aeronet
Sounding
https://purl.org/pe-repo/ocde/ford#1.05.09
id IGPR_82d9e233a28df8bb9874ace6d2a8e99a
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/5641
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA‑2 data
title Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA‑2 data
spellingShingle Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA‑2 data
Cazorla, María
Aerosols
Aerosols optical depth
Tropical Andes
Aeronet
Sounding
https://purl.org/pe-repo/ocde/ford#1.05.09
title_short Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA‑2 data
title_full Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA‑2 data
title_fullStr Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA‑2 data
title_full_unstemmed Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA‑2 data
title_sort Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA‑2 data
author Cazorla, María
author_facet Cazorla, María
Giles, David M.
Herrera, Edgar
Suárez Salas, Luis
Estevan, Rene
Andrade, Marcos
Bastidas, Álvaro
author_role author
author2 Giles, David M.
Herrera, Edgar
Suárez Salas, Luis
Estevan, Rene
Andrade, Marcos
Bastidas, Álvaro
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Cazorla, María
Giles, David M.
Herrera, Edgar
Suárez Salas, Luis
Estevan, Rene
Andrade, Marcos
Bastidas, Álvaro
dc.subject.none.fl_str_mv Aerosols
Aerosols optical depth
Tropical Andes
Aeronet
Sounding
topic Aerosols
Aerosols optical depth
Tropical Andes
Aeronet
Sounding
https://purl.org/pe-repo/ocde/ford#1.05.09
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.09
description The aerosol and precipitable water vapor (PW) distribution over the tropical Andes region is characterized using Aerosol Robotic Network (AERONET) observations at stations in Medellin (Colombia), Quito (Ecuador), Huancayo (Peru), and La Paz (Bolivia). AERONET aerosol optical depth (AOD) is interpreted using PM₂.₅ data when available. Columnar water vapor derived from ozone soundings at Quito is used to compare against AERONET PW. MERRA-2 data are used to complement analyses. Urban pollution and biomass burning smoke (BBS) dominate the regional aerosol composition. AOD and PM₂.₅ yearly cycles for coincident measurements correlate linearly at Medellin and Quito. The Andes cordillera’s orientation and elevation funnel or block BBS transport into valleys or highlands during the two fire seasons that systematically impact South America. The February–March season north of Colombia and the Colombian-Venezuelan border directly impacts Medellin. Possibly, the March aerosol signal over Quito has a long-range transport component. At Huancayo and La Paz, AOD increases in September due to the influence of BBS in the Amazon. AERONET PW and sounding data correlate linearly but a dry bias with respect to soundings was identified in AERONET. PW and rainfall progressively decrease from north to south due to increasing altitude. This regional diagnosis is an underlying basis to evaluate future changes in aerosol and PW given prevailing conditions of rapidly changing atmospheric composition.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-12-02T16:13:57Z
dc.date.available.none.fl_str_mv 2024-12-02T16:13:57Z
dc.date.issued.fl_str_mv 2024-01-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Cazorla, M., Giles, D. M., Herrera, E., Suárez, L., Estevan, R., Andrade, M., & Bastidas, Á. (2024). Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA-2 data.==$Scientific Reports, 14$==(1). https://doi.org/10.1038/s41598-024-51247-9
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/5641
dc.identifier.journal.none.fl_str_mv Scientifc Reports
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1038/s41598-024-51247-9
identifier_str_mv Cazorla, M., Giles, D. M., Herrera, E., Suárez, L., Estevan, R., Andrade, M., & Bastidas, Á. (2024). Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA-2 data.==$Scientific Reports, 14$==(1). https://doi.org/10.1038/s41598-024-51247-9
index-oti2018
Scientifc Reports
url http://hdl.handle.net/20.500.12816/5641
https://doi.org/10.1038/s41598-024-51247-9
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2045-2322
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Nature Research
publisher.none.fl_str_mv Nature Research
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/120280d3-50c8-4141-8791-5a19afc10793/download
https://repositorio.igp.gob.pe/bitstreams/f68dffe7-ae5e-4f11-b2bd-044e79f47a76/download
https://repositorio.igp.gob.pe/bitstreams/67fbb473-4a48-43a9-81f3-a74578dd9af3/download
https://repositorio.igp.gob.pe/bitstreams/3c601327-027a-497e-9677-af5471af08fe/download
bitstream.checksum.fl_str_mv bb9bdc0b3349e4284e09149f943790b4
f860e9f5964c15892d6f7bfe8936abfe
2503e5d67df1b954f4555a719cdb2ff4
0c3a65b73467fc4f01f8a536e620e454
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618259585630208
spelling Cazorla, MaríaGiles, David M.Herrera, EdgarSuárez Salas, LuisEstevan, ReneAndrade, MarcosBastidas, Álvaro2024-12-02T16:13:57Z2024-12-02T16:13:57Z2024-01-09Cazorla, M., Giles, D. M., Herrera, E., Suárez, L., Estevan, R., Andrade, M., & Bastidas, Á. (2024). Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA-2 data.==$Scientific Reports, 14$==(1). https://doi.org/10.1038/s41598-024-51247-9index-oti2018http://hdl.handle.net/20.500.12816/5641Scientifc Reportshttps://doi.org/10.1038/s41598-024-51247-9The aerosol and precipitable water vapor (PW) distribution over the tropical Andes region is characterized using Aerosol Robotic Network (AERONET) observations at stations in Medellin (Colombia), Quito (Ecuador), Huancayo (Peru), and La Paz (Bolivia). AERONET aerosol optical depth (AOD) is interpreted using PM₂.₅ data when available. Columnar water vapor derived from ozone soundings at Quito is used to compare against AERONET PW. MERRA-2 data are used to complement analyses. Urban pollution and biomass burning smoke (BBS) dominate the regional aerosol composition. AOD and PM₂.₅ yearly cycles for coincident measurements correlate linearly at Medellin and Quito. The Andes cordillera’s orientation and elevation funnel or block BBS transport into valleys or highlands during the two fire seasons that systematically impact South America. The February–March season north of Colombia and the Colombian-Venezuelan border directly impacts Medellin. Possibly, the March aerosol signal over Quito has a long-range transport component. At Huancayo and La Paz, AOD increases in September due to the influence of BBS in the Amazon. AERONET PW and sounding data correlate linearly but a dry bias with respect to soundings was identified in AERONET. PW and rainfall progressively decrease from north to south due to increasing altitude. This regional diagnosis is an underlying basis to evaluate future changes in aerosol and PW given prevailing conditions of rapidly changing atmospheric composition.Por paresapplication/pdfengNature Researchurn:issn:2045-2322info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/AerosolsAerosols optical depthTropical AndesAeronetSoundinghttps://purl.org/pe-repo/ocde/ford#1.05.09Latitudinal and temporal distribution of aerosols and precipitable water vapor in the tropical Andes from AERONET, sounding, and MERRA‑2 datainfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/120280d3-50c8-4141-8791-5a19afc10793/downloadbb9bdc0b3349e4284e09149f943790b4MD51ORIGINALCarzola_et_al_2024_Nature_Research.pdfCarzola_et_al_2024_Nature_Research.pdfapplication/pdf5071082https://repositorio.igp.gob.pe/bitstreams/f68dffe7-ae5e-4f11-b2bd-044e79f47a76/downloadf860e9f5964c15892d6f7bfe8936abfeMD52TEXTCarzola_et_al_2024_Nature_Research.pdf.txtCarzola_et_al_2024_Nature_Research.pdf.txtExtracted texttext/plain88645https://repositorio.igp.gob.pe/bitstreams/67fbb473-4a48-43a9-81f3-a74578dd9af3/download2503e5d67df1b954f4555a719cdb2ff4MD53THUMBNAILCarzola_et_al_2024_Nature_Research.pdf.jpgCarzola_et_al_2024_Nature_Research.pdf.jpgGenerated Thumbnailimage/jpeg43704https://repositorio.igp.gob.pe/bitstreams/3c601327-027a-497e-9677-af5471af08fe/download0c3a65b73467fc4f01f8a536e620e454MD5420.500.12816/5641oai:repositorio.igp.gob.pe:20.500.12816/56412024-12-10 14:19:57.051https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0IG93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLCB0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZyB0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sIGluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlIHN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yIHB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZSB0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQgdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uIGFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LCB5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZSBjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdCBzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkIHdpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRCBCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUgRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSCBDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZSBzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMgbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.736429
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).