Modeling ionograms with deep neural networks: applications to foF2 forecasting

Descripción del Articulo

Poster presented at the 2021 CEDAR Virtual Workshop, June 20-25.
Detalles Bibliográficos
Autores: Aricoché, J., Rojas, E., Milla, Marco
Formato: objeto de conferencia
Fecha de Publicación:2021
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/4965
Enlace del recurso:http://hdl.handle.net/20.500.12816/4965
Nivel de acceso:acceso abierto
Materia:Ionograms
Neural networks
foF2
https://purl.org/pe-repo/ocde/ford#1.05.01
id IGPR_3bcfc21d5ca4e1a303884915952969d2
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/4965
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.es_ES.fl_str_mv Modeling ionograms with deep neural networks: applications to foF2 forecasting
title Modeling ionograms with deep neural networks: applications to foF2 forecasting
spellingShingle Modeling ionograms with deep neural networks: applications to foF2 forecasting
Aricoché, J.
Ionograms
Neural networks
foF2
https://purl.org/pe-repo/ocde/ford#1.05.01
title_short Modeling ionograms with deep neural networks: applications to foF2 forecasting
title_full Modeling ionograms with deep neural networks: applications to foF2 forecasting
title_fullStr Modeling ionograms with deep neural networks: applications to foF2 forecasting
title_full_unstemmed Modeling ionograms with deep neural networks: applications to foF2 forecasting
title_sort Modeling ionograms with deep neural networks: applications to foF2 forecasting
author Aricoché, J.
author_facet Aricoché, J.
Rojas, E.
Milla, Marco
author_role author
author2 Rojas, E.
Milla, Marco
author2_role author
author
dc.contributor.author.fl_str_mv Aricoché, J.
Rojas, E.
Milla, Marco
dc.subject.es_ES.fl_str_mv Ionograms
Neural networks
foF2
topic Ionograms
Neural networks
foF2
https://purl.org/pe-repo/ocde/ford#1.05.01
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.01
description Poster presented at the 2021 CEDAR Virtual Workshop, June 20-25.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-07-09T14:29:01Z
dc.date.available.none.fl_str_mv 2021-07-09T14:29:01Z
dc.date.issued.fl_str_mv 2021-06
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/4965
url http://hdl.handle.net/20.500.12816/4965
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.es_ES.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Instituto Geofísico del Perú
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/7713d4d9-b041-4fc7-b4fe-2e26d2252d9c/download
https://repositorio.igp.gob.pe/bitstreams/c0461d3f-a118-4347-a91a-6061edc5b72c/download
https://repositorio.igp.gob.pe/bitstreams/e85de40c-8838-4cc1-9e4f-72ebe30f8616/download
https://repositorio.igp.gob.pe/bitstreams/b2533055-894e-470c-81f9-9ef9ea7aeb36/download
bitstream.checksum.fl_str_mv 77b591862a0b83505dd2f57bef38739a
8a4605be74aa9ea9d79846c1fba20a33
7b225665ad39cc7686635fdb9b6458ec
66d9bbe1ce474658f7306fd36f131095
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico del Peru
repository.mail.fl_str_mv dspace-help@myu.edu
_version_ 1842618376446279680
spelling Aricoché, J.Rojas, E.Milla, Marco2021-07-09T14:29:01Z2021-07-09T14:29:01Z2021-06http://hdl.handle.net/20.500.12816/4965Poster presented at the 2021 CEDAR Virtual Workshop, June 20-25.The ionosphere state parameters are of fundamental importance not only for radio communication but also for space weather. As most of the space phenomena, the dynamics are governed by nonlinear processes that make forecasts a challenging endeavor. We now have available enormous datasets and ubiquitous experimental sources that can help us finding the intricate regularities in these phenomena. In this work, we will focus on the forecasting of some parameters of the steady-state low latitude ionosphere. We used ionograms from Jicamarca Radio Observatory digisonde to train two neural networks. We produced forecasts of ionospheric parameters such as virtual heights and foF2 taking into consideration ionogram characteristics. These estimations were compared to the corresponding values obtained from the digisonde, the persistence model, and foF2 values obtained from the International reference ionosphere.application/pdfengInstituto Geofísico del Perúinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/IonogramsNeural networksfoF2https://purl.org/pe-repo/ocde/ford#1.05.01Modeling ionograms with deep neural networks: applications to foF2 forecastinginfo:eu-repo/semantics/conferenceObjectreponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALPoster_Aricoche_et_al_2021.pdfPoster_Aricoche_et_al_2021.pdfapplication/pdf1305967https://repositorio.igp.gob.pe/bitstreams/7713d4d9-b041-4fc7-b4fe-2e26d2252d9c/download77b591862a0b83505dd2f57bef38739aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/c0461d3f-a118-4347-a91a-6061edc5b72c/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPoster_Aricoche_et_al_2021.pdf.txtPoster_Aricoche_et_al_2021.pdf.txtExtracted texttext/plain6532https://repositorio.igp.gob.pe/bitstreams/e85de40c-8838-4cc1-9e4f-72ebe30f8616/download7b225665ad39cc7686635fdb9b6458ecMD53THUMBNAILPoster_Aricoche_et_al_2021.pdf.jpgPoster_Aricoche_et_al_2021.pdf.jpgIM Thumbnailimage/jpeg150373https://repositorio.igp.gob.pe/bitstreams/b2533055-894e-470c-81f9-9ef9ea7aeb36/download66d9bbe1ce474658f7306fd36f131095MD5420.500.12816/4965oai:repositorio.igp.gob.pe:20.500.12816/49652021-07-09 14:42:11.119https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico del Perudspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.95884
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).