Modeling ionograms with deep neural networks: applications to foF2 forecasting
Descripción del Articulo
Poster presented at the 2021 CEDAR Virtual Workshop, June 20-25.
| Autores: | , , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2021 |
| Institución: | Instituto Geofísico del Perú |
| Repositorio: | IGP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/4965 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12816/4965 |
| Nivel de acceso: | acceso abierto |
| Materia: | Ionograms Neural networks foF2 https://purl.org/pe-repo/ocde/ford#1.05.01 |
| id |
IGPR_3bcfc21d5ca4e1a303884915952969d2 |
|---|---|
| oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/4965 |
| network_acronym_str |
IGPR |
| network_name_str |
IGP-Institucional |
| repository_id_str |
4701 |
| dc.title.es_ES.fl_str_mv |
Modeling ionograms with deep neural networks: applications to foF2 forecasting |
| title |
Modeling ionograms with deep neural networks: applications to foF2 forecasting |
| spellingShingle |
Modeling ionograms with deep neural networks: applications to foF2 forecasting Aricoché, J. Ionograms Neural networks foF2 https://purl.org/pe-repo/ocde/ford#1.05.01 |
| title_short |
Modeling ionograms with deep neural networks: applications to foF2 forecasting |
| title_full |
Modeling ionograms with deep neural networks: applications to foF2 forecasting |
| title_fullStr |
Modeling ionograms with deep neural networks: applications to foF2 forecasting |
| title_full_unstemmed |
Modeling ionograms with deep neural networks: applications to foF2 forecasting |
| title_sort |
Modeling ionograms with deep neural networks: applications to foF2 forecasting |
| author |
Aricoché, J. |
| author_facet |
Aricoché, J. Rojas, E. Milla, Marco |
| author_role |
author |
| author2 |
Rojas, E. Milla, Marco |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Aricoché, J. Rojas, E. Milla, Marco |
| dc.subject.es_ES.fl_str_mv |
Ionograms Neural networks foF2 |
| topic |
Ionograms Neural networks foF2 https://purl.org/pe-repo/ocde/ford#1.05.01 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.01 |
| description |
Poster presented at the 2021 CEDAR Virtual Workshop, June 20-25. |
| publishDate |
2021 |
| dc.date.accessioned.none.fl_str_mv |
2021-07-09T14:29:01Z |
| dc.date.available.none.fl_str_mv |
2021-07-09T14:29:01Z |
| dc.date.issued.fl_str_mv |
2021-06 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/4965 |
| url |
http://hdl.handle.net/20.500.12816/4965 |
| dc.language.iso.es_ES.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_ES.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.es_ES.fl_str_mv |
application/pdf |
| dc.publisher.es_ES.fl_str_mv |
Instituto Geofísico del Perú |
| dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
| instname_str |
Instituto Geofísico del Perú |
| instacron_str |
IGP |
| institution |
IGP |
| reponame_str |
IGP-Institucional |
| collection |
IGP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/7713d4d9-b041-4fc7-b4fe-2e26d2252d9c/download https://repositorio.igp.gob.pe/bitstreams/c0461d3f-a118-4347-a91a-6061edc5b72c/download https://repositorio.igp.gob.pe/bitstreams/e85de40c-8838-4cc1-9e4f-72ebe30f8616/download https://repositorio.igp.gob.pe/bitstreams/b2533055-894e-470c-81f9-9ef9ea7aeb36/download |
| bitstream.checksum.fl_str_mv |
77b591862a0b83505dd2f57bef38739a 8a4605be74aa9ea9d79846c1fba20a33 7b225665ad39cc7686635fdb9b6458ec 66d9bbe1ce474658f7306fd36f131095 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Geofísico del Peru |
| repository.mail.fl_str_mv |
dspace-help@myu.edu |
| _version_ |
1842618376446279680 |
| spelling |
Aricoché, J.Rojas, E.Milla, Marco2021-07-09T14:29:01Z2021-07-09T14:29:01Z2021-06http://hdl.handle.net/20.500.12816/4965Poster presented at the 2021 CEDAR Virtual Workshop, June 20-25.The ionosphere state parameters are of fundamental importance not only for radio communication but also for space weather. As most of the space phenomena, the dynamics are governed by nonlinear processes that make forecasts a challenging endeavor. We now have available enormous datasets and ubiquitous experimental sources that can help us finding the intricate regularities in these phenomena. In this work, we will focus on the forecasting of some parameters of the steady-state low latitude ionosphere. We used ionograms from Jicamarca Radio Observatory digisonde to train two neural networks. We produced forecasts of ionospheric parameters such as virtual heights and foF2 taking into consideration ionogram characteristics. These estimations were compared to the corresponding values obtained from the digisonde, the persistence model, and foF2 values obtained from the International reference ionosphere.application/pdfengInstituto Geofísico del Perúinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/IonogramsNeural networksfoF2https://purl.org/pe-repo/ocde/ford#1.05.01Modeling ionograms with deep neural networks: applications to foF2 forecastinginfo:eu-repo/semantics/conferenceObjectreponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALPoster_Aricoche_et_al_2021.pdfPoster_Aricoche_et_al_2021.pdfapplication/pdf1305967https://repositorio.igp.gob.pe/bitstreams/7713d4d9-b041-4fc7-b4fe-2e26d2252d9c/download77b591862a0b83505dd2f57bef38739aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/c0461d3f-a118-4347-a91a-6061edc5b72c/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTPoster_Aricoche_et_al_2021.pdf.txtPoster_Aricoche_et_al_2021.pdf.txtExtracted texttext/plain6532https://repositorio.igp.gob.pe/bitstreams/e85de40c-8838-4cc1-9e4f-72ebe30f8616/download7b225665ad39cc7686635fdb9b6458ecMD53THUMBNAILPoster_Aricoche_et_al_2021.pdf.jpgPoster_Aricoche_et_al_2021.pdf.jpgIM Thumbnailimage/jpeg150373https://repositorio.igp.gob.pe/bitstreams/b2533055-894e-470c-81f9-9ef9ea7aeb36/download66d9bbe1ce474658f7306fd36f131095MD5420.500.12816/4965oai:repositorio.igp.gob.pe:20.500.12816/49652021-07-09 14:42:11.119https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico del Perudspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.95884 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).