Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing
Descripción del Articulo
Non-linear Error Compensation Technique with Associative Restoration (NECTAR) is a novel approach to the assimilation of fragmentary sensor data to produce a global nowcast of the near-Earth space weather. NECTAR restores missing information by iteratively transforming (“morphing”) an underlying glo...
Autores: | , , , , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2020 |
Institución: | Instituto Geofísico del Perú |
Repositorio: | IGP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/4948 |
Enlace del recurso: | http://hdl.handle.net/20.500.12816/4948 https://doi.org/10.1029/2020SW002463 |
Nivel de acceso: | acceso abierto |
Materia: | Data assimilation Diurnal harmonic analysis Hopfield networks Model morphing Spatial prediction Weather nowcast https://purl.org/pe-repo/ocde/ford#1.05.01 |
id |
IGPR_333c6d42bb5d893e6c4715af43a0a39b |
---|---|
oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/4948 |
network_acronym_str |
IGPR |
network_name_str |
IGP-Institucional |
repository_id_str |
4701 |
dc.title.none.fl_str_mv |
Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing |
title |
Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing |
spellingShingle |
Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing Galkin, I. A. Data assimilation Diurnal harmonic analysis Hopfield networks Model morphing Spatial prediction Weather nowcast https://purl.org/pe-repo/ocde/ford#1.05.01 |
title_short |
Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing |
title_full |
Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing |
title_fullStr |
Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing |
title_full_unstemmed |
Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing |
title_sort |
Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing |
author |
Galkin, I. A. |
author_facet |
Galkin, I. A. Reinisch, B. W. Vesnin, A. M. Bilitza, D. Fridman, S. Habarulema, J. B. Veliz, Oscar |
author_role |
author |
author2 |
Reinisch, B. W. Vesnin, A. M. Bilitza, D. Fridman, S. Habarulema, J. B. Veliz, Oscar |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Galkin, I. A. Reinisch, B. W. Vesnin, A. M. Bilitza, D. Fridman, S. Habarulema, J. B. Veliz, Oscar |
dc.subject.none.fl_str_mv |
Data assimilation Diurnal harmonic analysis Hopfield networks Model morphing Spatial prediction Weather nowcast |
topic |
Data assimilation Diurnal harmonic analysis Hopfield networks Model morphing Spatial prediction Weather nowcast https://purl.org/pe-repo/ocde/ford#1.05.01 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.01 |
description |
Non-linear Error Compensation Technique with Associative Restoration (NECTAR) is a novel approach to the assimilation of fragmentary sensor data to produce a global nowcast of the near-Earth space weather. NECTAR restores missing information by iteratively transforming (“morphing”) an underlying global climatology model into agreement with currently available sensor data. The morphing procedure benefits from analysis of the inherent multiscale diurnal periodicity of the geosystems by processing 24-hr time histories of the differences between measured and climate-expected values at each sensor site. The 24-hr deviation time series are used to compute and then globally interpolate the diurnal deviation harmonics. NECTAR therefore views the geosystem in terms of its periodic planetary-scale basis to associate observed fragments of the activity with the grand-scale weather processes of the matching variability scales. Such approach strengthens the restorative capability of the assimilation, specifically when only a limited number of observatories is available for the weather nowcast. Scenarios where the NECTAR concept works best are common in planetary-scale near-Earth weather applications, especially where sensor instrumentation is complex, expensive, and therefore scarce. To conduct the assimilation process, NECTAR employs a Hopfield feedback recurrent neural network commonly used in the associative memory architectures. Associative memories mimic human capability to restore full information from its initial fragments. When applied to the sparse spatial data, such a neural network becomes a nonlinear multiscale interpolator of missing information. Early tests of the NECTAR morphing reveal its enhanced capability to predict system dynamics over no-data regions (spatial interpolation). |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-06-15T10:32:40Z |
dc.date.available.none.fl_str_mv |
2021-06-15T10:32:40Z |
dc.date.issued.fl_str_mv |
2020-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.none.fl_str_mv |
Galkin, I. A., Reinisch, B. W., Vesnin, A. M., Bilitza, D., Fridman, S., Habarulema, J. B., & Veliz, O. (2020). Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing.==$Space Weather, 18$==(11). https://doi.org/10.1029/2020SW002463 |
dc.identifier.govdoc.none.fl_str_mv |
index-oti2018 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/4948 |
dc.identifier.journal.none.fl_str_mv |
Space Weather |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1029/2020SW002463 |
identifier_str_mv |
Galkin, I. A., Reinisch, B. W., Vesnin, A. M., Bilitza, D., Fridman, S., Habarulema, J. B., & Veliz, O. (2020). Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing.==$Space Weather, 18$==(11). https://doi.org/10.1029/2020SW002463 index-oti2018 Space Weather |
url |
http://hdl.handle.net/20.500.12816/4948 https://doi.org/10.1029/2020SW002463 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:1542-7390 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
instname_str |
Instituto Geofísico del Perú |
instacron_str |
IGP |
institution |
IGP |
reponame_str |
IGP-Institucional |
collection |
IGP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/85cfe084-5961-4553-a0ff-2b40ceeb3689/download https://repositorio.igp.gob.pe/bitstreams/f7b2e1e9-2e4d-4e9e-bbd3-b2b8665771f6/download https://repositorio.igp.gob.pe/bitstreams/dafe4bcf-d15c-48b1-9928-d94173b2b9cc/download https://repositorio.igp.gob.pe/bitstreams/6cd0b802-8a3e-44a7-ac56-4b5695df9369/download |
bitstream.checksum.fl_str_mv |
3b9a8e62eb6b8d164caa1c6c98a7b49c 8a4605be74aa9ea9d79846c1fba20a33 63ad5335f8b56f47363579a6dc5936fa d9ea9d42b539f34188b410ebb11334e4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
repository.mail.fl_str_mv |
biblio@igp.gob.pe |
_version_ |
1842618535262552064 |
spelling |
Galkin, I. A.Reinisch, B. W.Vesnin, A. M.Bilitza, D.Fridman, S.Habarulema, J. B.Veliz, Oscar2021-06-15T10:32:40Z2021-06-15T10:32:40Z2020-11Galkin, I. A., Reinisch, B. W., Vesnin, A. M., Bilitza, D., Fridman, S., Habarulema, J. B., & Veliz, O. (2020). Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing.==$Space Weather, 18$==(11). https://doi.org/10.1029/2020SW002463index-oti2018http://hdl.handle.net/20.500.12816/4948Space Weatherhttps://doi.org/10.1029/2020SW002463Non-linear Error Compensation Technique with Associative Restoration (NECTAR) is a novel approach to the assimilation of fragmentary sensor data to produce a global nowcast of the near-Earth space weather. NECTAR restores missing information by iteratively transforming (“morphing”) an underlying global climatology model into agreement with currently available sensor data. The morphing procedure benefits from analysis of the inherent multiscale diurnal periodicity of the geosystems by processing 24-hr time histories of the differences between measured and climate-expected values at each sensor site. The 24-hr deviation time series are used to compute and then globally interpolate the diurnal deviation harmonics. NECTAR therefore views the geosystem in terms of its periodic planetary-scale basis to associate observed fragments of the activity with the grand-scale weather processes of the matching variability scales. Such approach strengthens the restorative capability of the assimilation, specifically when only a limited number of observatories is available for the weather nowcast. Scenarios where the NECTAR concept works best are common in planetary-scale near-Earth weather applications, especially where sensor instrumentation is complex, expensive, and therefore scarce. To conduct the assimilation process, NECTAR employs a Hopfield feedback recurrent neural network commonly used in the associative memory architectures. Associative memories mimic human capability to restore full information from its initial fragments. When applied to the sparse spatial data, such a neural network becomes a nonlinear multiscale interpolator of missing information. Early tests of the NECTAR morphing reveal its enhanced capability to predict system dynamics over no-data regions (spatial interpolation).Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:1542-7390info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Data assimilationDiurnal harmonic analysisHopfield networksModel morphingSpatial predictionWeather nowcasthttps://purl.org/pe-repo/ocde/ford#1.05.01Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphinginfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALGalkin_et_al_2020_Space-Weather.pdfGalkin_et_al_2020_Space-Weather.pdfapplication/pdf7521909https://repositorio.igp.gob.pe/bitstreams/85cfe084-5961-4553-a0ff-2b40ceeb3689/download3b9a8e62eb6b8d164caa1c6c98a7b49cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/f7b2e1e9-2e4d-4e9e-bbd3-b2b8665771f6/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTGalkin_et_al_2020_Space-Weather.pdf.txtGalkin_et_al_2020_Space-Weather.pdf.txtExtracted texttext/plain69371https://repositorio.igp.gob.pe/bitstreams/dafe4bcf-d15c-48b1-9928-d94173b2b9cc/download63ad5335f8b56f47363579a6dc5936faMD53THUMBNAILGalkin_et_al_2020_Space-Weather.pdf.jpgGalkin_et_al_2020_Space-Weather.pdf.jpgIM Thumbnailimage/jpeg180962https://repositorio.igp.gob.pe/bitstreams/6cd0b802-8a3e-44a7-ac56-4b5695df9369/downloadd9ea9d42b539f34188b410ebb11334e4MD5420.500.12816/4948oai:repositorio.igp.gob.pe:20.500.12816/49482024-10-12 22:19:00.48https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.4519415 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).