Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing

Descripción del Articulo

Non-linear Error Compensation Technique with Associative Restoration (NECTAR) is a novel approach to the assimilation of fragmentary sensor data to produce a global nowcast of the near-Earth space weather. NECTAR restores missing information by iteratively transforming (“morphing”) an underlying glo...

Descripción completa

Detalles Bibliográficos
Autores: Galkin, I. A., Reinisch, B. W., Vesnin, A. M., Bilitza, D., Fridman, S., Habarulema, J. B., Veliz, Oscar
Formato: artículo
Fecha de Publicación:2020
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/4948
Enlace del recurso:http://hdl.handle.net/20.500.12816/4948
https://doi.org/10.1029/2020SW002463
Nivel de acceso:acceso abierto
Materia:Data assimilation
Diurnal harmonic analysis
Hopfield networks
Model morphing
Spatial prediction
Weather nowcast
https://purl.org/pe-repo/ocde/ford#1.05.01
id IGPR_333c6d42bb5d893e6c4715af43a0a39b
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/4948
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing
title Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing
spellingShingle Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing
Galkin, I. A.
Data assimilation
Diurnal harmonic analysis
Hopfield networks
Model morphing
Spatial prediction
Weather nowcast
https://purl.org/pe-repo/ocde/ford#1.05.01
title_short Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing
title_full Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing
title_fullStr Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing
title_full_unstemmed Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing
title_sort Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing
author Galkin, I. A.
author_facet Galkin, I. A.
Reinisch, B. W.
Vesnin, A. M.
Bilitza, D.
Fridman, S.
Habarulema, J. B.
Veliz, Oscar
author_role author
author2 Reinisch, B. W.
Vesnin, A. M.
Bilitza, D.
Fridman, S.
Habarulema, J. B.
Veliz, Oscar
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Galkin, I. A.
Reinisch, B. W.
Vesnin, A. M.
Bilitza, D.
Fridman, S.
Habarulema, J. B.
Veliz, Oscar
dc.subject.none.fl_str_mv Data assimilation
Diurnal harmonic analysis
Hopfield networks
Model morphing
Spatial prediction
Weather nowcast
topic Data assimilation
Diurnal harmonic analysis
Hopfield networks
Model morphing
Spatial prediction
Weather nowcast
https://purl.org/pe-repo/ocde/ford#1.05.01
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.01
description Non-linear Error Compensation Technique with Associative Restoration (NECTAR) is a novel approach to the assimilation of fragmentary sensor data to produce a global nowcast of the near-Earth space weather. NECTAR restores missing information by iteratively transforming (“morphing”) an underlying global climatology model into agreement with currently available sensor data. The morphing procedure benefits from analysis of the inherent multiscale diurnal periodicity of the geosystems by processing 24-hr time histories of the differences between measured and climate-expected values at each sensor site. The 24-hr deviation time series are used to compute and then globally interpolate the diurnal deviation harmonics. NECTAR therefore views the geosystem in terms of its periodic planetary-scale basis to associate observed fragments of the activity with the grand-scale weather processes of the matching variability scales. Such approach strengthens the restorative capability of the assimilation, specifically when only a limited number of observatories is available for the weather nowcast. Scenarios where the NECTAR concept works best are common in planetary-scale near-Earth weather applications, especially where sensor instrumentation is complex, expensive, and therefore scarce. To conduct the assimilation process, NECTAR employs a Hopfield feedback recurrent neural network commonly used in the associative memory architectures. Associative memories mimic human capability to restore full information from its initial fragments. When applied to the sparse spatial data, such a neural network becomes a nonlinear multiscale interpolator of missing information. Early tests of the NECTAR morphing reveal its enhanced capability to predict system dynamics over no-data regions (spatial interpolation).
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2021-06-15T10:32:40Z
dc.date.available.none.fl_str_mv 2021-06-15T10:32:40Z
dc.date.issued.fl_str_mv 2020-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Galkin, I. A., Reinisch, B. W., Vesnin, A. M., Bilitza, D., Fridman, S., Habarulema, J. B., & Veliz, O. (2020). Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing.==$Space Weather, 18$==(11). https://doi.org/10.1029/2020SW002463
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/4948
dc.identifier.journal.none.fl_str_mv Space Weather
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1029/2020SW002463
identifier_str_mv Galkin, I. A., Reinisch, B. W., Vesnin, A. M., Bilitza, D., Fridman, S., Habarulema, J. B., & Veliz, O. (2020). Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing.==$Space Weather, 18$==(11). https://doi.org/10.1029/2020SW002463
index-oti2018
Space Weather
url http://hdl.handle.net/20.500.12816/4948
https://doi.org/10.1029/2020SW002463
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1542-7390
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/85cfe084-5961-4553-a0ff-2b40ceeb3689/download
https://repositorio.igp.gob.pe/bitstreams/f7b2e1e9-2e4d-4e9e-bbd3-b2b8665771f6/download
https://repositorio.igp.gob.pe/bitstreams/dafe4bcf-d15c-48b1-9928-d94173b2b9cc/download
https://repositorio.igp.gob.pe/bitstreams/6cd0b802-8a3e-44a7-ac56-4b5695df9369/download
bitstream.checksum.fl_str_mv 3b9a8e62eb6b8d164caa1c6c98a7b49c
8a4605be74aa9ea9d79846c1fba20a33
63ad5335f8b56f47363579a6dc5936fa
d9ea9d42b539f34188b410ebb11334e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618535262552064
spelling Galkin, I. A.Reinisch, B. W.Vesnin, A. M.Bilitza, D.Fridman, S.Habarulema, J. B.Veliz, Oscar2021-06-15T10:32:40Z2021-06-15T10:32:40Z2020-11Galkin, I. A., Reinisch, B. W., Vesnin, A. M., Bilitza, D., Fridman, S., Habarulema, J. B., & Veliz, O. (2020). Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing.==$Space Weather, 18$==(11). https://doi.org/10.1029/2020SW002463index-oti2018http://hdl.handle.net/20.500.12816/4948Space Weatherhttps://doi.org/10.1029/2020SW002463Non-linear Error Compensation Technique with Associative Restoration (NECTAR) is a novel approach to the assimilation of fragmentary sensor data to produce a global nowcast of the near-Earth space weather. NECTAR restores missing information by iteratively transforming (“morphing”) an underlying global climatology model into agreement with currently available sensor data. The morphing procedure benefits from analysis of the inherent multiscale diurnal periodicity of the geosystems by processing 24-hr time histories of the differences between measured and climate-expected values at each sensor site. The 24-hr deviation time series are used to compute and then globally interpolate the diurnal deviation harmonics. NECTAR therefore views the geosystem in terms of its periodic planetary-scale basis to associate observed fragments of the activity with the grand-scale weather processes of the matching variability scales. Such approach strengthens the restorative capability of the assimilation, specifically when only a limited number of observatories is available for the weather nowcast. Scenarios where the NECTAR concept works best are common in planetary-scale near-Earth weather applications, especially where sensor instrumentation is complex, expensive, and therefore scarce. To conduct the assimilation process, NECTAR employs a Hopfield feedback recurrent neural network commonly used in the associative memory architectures. Associative memories mimic human capability to restore full information from its initial fragments. When applied to the sparse spatial data, such a neural network becomes a nonlinear multiscale interpolator of missing information. Early tests of the NECTAR morphing reveal its enhanced capability to predict system dynamics over no-data regions (spatial interpolation).Por paresapplication/pdfengAmerican Geophysical Unionurn:issn:1542-7390info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/4.0/Data assimilationDiurnal harmonic analysisHopfield networksModel morphingSpatial predictionWeather nowcasthttps://purl.org/pe-repo/ocde/ford#1.05.01Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphinginfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALGalkin_et_al_2020_Space-Weather.pdfGalkin_et_al_2020_Space-Weather.pdfapplication/pdf7521909https://repositorio.igp.gob.pe/bitstreams/85cfe084-5961-4553-a0ff-2b40ceeb3689/download3b9a8e62eb6b8d164caa1c6c98a7b49cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/f7b2e1e9-2e4d-4e9e-bbd3-b2b8665771f6/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTGalkin_et_al_2020_Space-Weather.pdf.txtGalkin_et_al_2020_Space-Weather.pdf.txtExtracted texttext/plain69371https://repositorio.igp.gob.pe/bitstreams/dafe4bcf-d15c-48b1-9928-d94173b2b9cc/download63ad5335f8b56f47363579a6dc5936faMD53THUMBNAILGalkin_et_al_2020_Space-Weather.pdf.jpgGalkin_et_al_2020_Space-Weather.pdf.jpgIM Thumbnailimage/jpeg180962https://repositorio.igp.gob.pe/bitstreams/6cd0b802-8a3e-44a7-ac56-4b5695df9369/downloadd9ea9d42b539f34188b410ebb11334e4MD5420.500.12816/4948oai:repositorio.igp.gob.pe:20.500.12816/49482024-10-12 22:19:00.48https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.4519415
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).