Assimilation of sparse continuous near-earth weather measurements by NECTAR model morphing

Descripción del Articulo

Non-linear Error Compensation Technique with Associative Restoration (NECTAR) is a novel approach to the assimilation of fragmentary sensor data to produce a global nowcast of the near-Earth space weather. NECTAR restores missing information by iteratively transforming (“morphing”) an underlying glo...

Descripción completa

Detalles Bibliográficos
Autores: Galkin, I. A., Reinisch, B. W., Vesnin, A. M., Bilitza, D., Fridman, S., Habarulema, J. B., Veliz, Oscar
Formato: artículo
Fecha de Publicación:2020
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/4948
Enlace del recurso:http://hdl.handle.net/20.500.12816/4948
https://doi.org/10.1029/2020SW002463
Nivel de acceso:acceso abierto
Materia:Data assimilation
Diurnal harmonic analysis
Hopfield networks
Model morphing
Spatial prediction
Weather nowcast
https://purl.org/pe-repo/ocde/ford#1.05.01
Descripción
Sumario:Non-linear Error Compensation Technique with Associative Restoration (NECTAR) is a novel approach to the assimilation of fragmentary sensor data to produce a global nowcast of the near-Earth space weather. NECTAR restores missing information by iteratively transforming (“morphing”) an underlying global climatology model into agreement with currently available sensor data. The morphing procedure benefits from analysis of the inherent multiscale diurnal periodicity of the geosystems by processing 24-hr time histories of the differences between measured and climate-expected values at each sensor site. The 24-hr deviation time series are used to compute and then globally interpolate the diurnal deviation harmonics. NECTAR therefore views the geosystem in terms of its periodic planetary-scale basis to associate observed fragments of the activity with the grand-scale weather processes of the matching variability scales. Such approach strengthens the restorative capability of the assimilation, specifically when only a limited number of observatories is available for the weather nowcast. Scenarios where the NECTAR concept works best are common in planetary-scale near-Earth weather applications, especially where sensor instrumentation is complex, expensive, and therefore scarce. To conduct the assimilation process, NECTAR employs a Hopfield feedback recurrent neural network commonly used in the associative memory architectures. Associative memories mimic human capability to restore full information from its initial fragments. When applied to the sparse spatial data, such a neural network becomes a nonlinear multiscale interpolator of missing information. Early tests of the NECTAR morphing reveal its enhanced capability to predict system dynamics over no-data regions (spatial interpolation).
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).