Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru

Descripción del Articulo

Multiple linear regression models were developed for 1–3-day lead forecasts of maximum and minimum temperature for two locations in the city of Lima, on the central coast of Peru (12°S), and contrasted with the operational forecasts issued by the National Meteorological and Hydrological Service—SENA...

Descripción completa

Detalles Bibliográficos
Autores: Aliaga-Nestares, Vannia, De La Cruz, Gustavo, Takahashi, Ken
Formato: artículo
Fecha de Publicación:2023
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/5452
Enlace del recurso:http://hdl.handle.net/20.500.12816/5452
https://doi.org/10.1175/WAF-D-21-0094.1
Nivel de acceso:acceso abierto
Materia:Synoptic climatology
Synoptic-scale processes
Regression analysis
Forecast verification/skill
Numerical weather prediction/forecasting
https://purl.org/pe-repo/ocde/ford#1.05.09
id IGPR_2c168ceb94e498cf07df5fe928cde9f4
oai_identifier_str oai:repositorio.igp.gob.pe:20.500.12816/5452
network_acronym_str IGPR
network_name_str IGP-Institucional
repository_id_str 4701
dc.title.none.fl_str_mv Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru
title Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru
spellingShingle Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru
Aliaga-Nestares, Vannia
Synoptic climatology
Synoptic-scale processes
Regression analysis
Forecast verification/skill
Numerical weather prediction/forecasting
https://purl.org/pe-repo/ocde/ford#1.05.09
title_short Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru
title_full Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru
title_fullStr Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru
title_full_unstemmed Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru
title_sort Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru
author Aliaga-Nestares, Vannia
author_facet Aliaga-Nestares, Vannia
De La Cruz, Gustavo
Takahashi, Ken
author_role author
author2 De La Cruz, Gustavo
Takahashi, Ken
author2_role author
author
dc.contributor.author.fl_str_mv Aliaga-Nestares, Vannia
De La Cruz, Gustavo
Takahashi, Ken
dc.subject.none.fl_str_mv Synoptic climatology
Synoptic-scale processes
Regression analysis
Forecast verification/skill
Numerical weather prediction/forecasting
topic Synoptic climatology
Synoptic-scale processes
Regression analysis
Forecast verification/skill
Numerical weather prediction/forecasting
https://purl.org/pe-repo/ocde/ford#1.05.09
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.05.09
description Multiple linear regression models were developed for 1–3-day lead forecasts of maximum and minimum temperature for two locations in the city of Lima, on the central coast of Peru (12°S), and contrasted with the operational forecasts issued by the National Meteorological and Hydrological Service—SENAMHI and the output of a regional numerical atmospheric model. We developed empirical models, fitted to data from the 2000–13 period, and verified their skill for the 2014–19 period. Since El Niño produces a strong low-frequency signal, the models focus on the high-frequency weather and subseasonal variability (60-day cutoff). The empirical models outperformed the operational forecasts and the numerical model. For instance, the high-frequency annual correlation coefficient and root-mean-square error (RMSE) for the 1-day lead forecasts were 0.37°–0.53° and 0.74°–1.76°C for the empirical model, respectively, but from around −0.05° to 0.24° and 0.88°–4.21°C in the operational case. Only three predictors were considered for the models, including persistence and large-scale atmospheric indices. Contrary to our belief, the model skill was lowest for the austral winter (June–August), when the extratropical influence is largest, suggesting an enhanced role of local effects. Including local specific humidity as a predictor for minimum temperature at the inland location substantially increased the skill and reduced its seasonality. There were cases in which both the operational and empirical forecast had similar strong errors and we suggest mesoscale circulations, such as the low-level cyclonic vortex over the ocean, as the culprit. Incorporating such information could be valuable for improving the forecasts.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-08T20:06:47Z
dc.date.available.none.fl_str_mv 2023-09-08T20:06:47Z
dc.date.issued.fl_str_mv 2023-04-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.citation.none.fl_str_mv Aliaga-Nestares, V., De La Cruz, G., & Takahashi, K. (2023). Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru.==$Weather and Forecasting, 38$==(4), 555-570. https://doi.org/10.1175/WAF-D-21-0094.1
dc.identifier.govdoc.none.fl_str_mv index-oti2018
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12816/5452
dc.identifier.journal.none.fl_str_mv Weather and Forecasting
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1175/WAF-D-21-0094.1
identifier_str_mv Aliaga-Nestares, V., De La Cruz, G., & Takahashi, K. (2023). Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru.==$Weather and Forecasting, 38$==(4), 555-570. https://doi.org/10.1175/WAF-D-21-0094.1
index-oti2018
Weather and Forecasting
url http://hdl.handle.net/20.500.12816/5452
https://doi.org/10.1175/WAF-D-21-0094.1
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1520-0434
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0/
dc.format.none.fl_str_mv application/pdf
dc.coverage.spatial.none.fl_str_mv Perú
dc.publisher.none.fl_str_mv AMS
publisher.none.fl_str_mv AMS
dc.source.none.fl_str_mv reponame:IGP-Institucional
instname:Instituto Geofísico del Perú
instacron:IGP
instname_str Instituto Geofísico del Perú
instacron_str IGP
institution IGP
reponame_str IGP-Institucional
collection IGP-Institucional
bitstream.url.fl_str_mv https://repositorio.igp.gob.pe/bitstreams/54105f85-216c-484c-b56d-e96ded48dd31/download
https://repositorio.igp.gob.pe/bitstreams/5877cf14-510c-43fc-8003-b8b29617010f/download
https://repositorio.igp.gob.pe/bitstreams/8fdbda53-384e-4ae3-99f5-df29197940c3/download
https://repositorio.igp.gob.pe/bitstreams/229cfd80-b3ef-40dd-8ad7-50aeb6d5a006/download
bitstream.checksum.fl_str_mv ad3bca8d8dd1a8e6f3498f57782e2807
8a4605be74aa9ea9d79846c1fba20a33
c3bfa52f1b27cd39daccbbbd8a6064d8
3fc1902bdd2bd0cd68b0b3c4e8821349
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Geofísico Nacional
repository.mail.fl_str_mv biblio@igp.gob.pe
_version_ 1842618152965373952
spelling Aliaga-Nestares, VanniaDe La Cruz, GustavoTakahashi, KenPerú2023-09-08T20:06:47Z2023-09-08T20:06:47Z2023-04-06Aliaga-Nestares, V., De La Cruz, G., & Takahashi, K. (2023). Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru.==$Weather and Forecasting, 38$==(4), 555-570. https://doi.org/10.1175/WAF-D-21-0094.1index-oti2018http://hdl.handle.net/20.500.12816/5452Weather and Forecastinghttps://doi.org/10.1175/WAF-D-21-0094.1Multiple linear regression models were developed for 1–3-day lead forecasts of maximum and minimum temperature for two locations in the city of Lima, on the central coast of Peru (12°S), and contrasted with the operational forecasts issued by the National Meteorological and Hydrological Service—SENAMHI and the output of a regional numerical atmospheric model. We developed empirical models, fitted to data from the 2000–13 period, and verified their skill for the 2014–19 period. Since El Niño produces a strong low-frequency signal, the models focus on the high-frequency weather and subseasonal variability (60-day cutoff). The empirical models outperformed the operational forecasts and the numerical model. For instance, the high-frequency annual correlation coefficient and root-mean-square error (RMSE) for the 1-day lead forecasts were 0.37°–0.53° and 0.74°–1.76°C for the empirical model, respectively, but from around −0.05° to 0.24° and 0.88°–4.21°C in the operational case. Only three predictors were considered for the models, including persistence and large-scale atmospheric indices. Contrary to our belief, the model skill was lowest for the austral winter (June–August), when the extratropical influence is largest, suggesting an enhanced role of local effects. Including local specific humidity as a predictor for minimum temperature at the inland location substantially increased the skill and reduced its seasonality. There were cases in which both the operational and empirical forecast had similar strong errors and we suggest mesoscale circulations, such as the low-level cyclonic vortex over the ocean, as the culprit. Incorporating such information could be valuable for improving the forecasts.Por paresapplication/pdfengAMSurn:issn:1520-0434info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Synoptic climatologySynoptic-scale processesRegression analysisForecast verification/skillNumerical weather prediction/forecastinghttps://purl.org/pe-repo/ocde/ford#1.05.09Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peruinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdfAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdfapplication/pdf4364472https://repositorio.igp.gob.pe/bitstreams/54105f85-216c-484c-b56d-e96ded48dd31/downloadad3bca8d8dd1a8e6f3498f57782e2807MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/5877cf14-510c-43fc-8003-b8b29617010f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdf.txtAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdf.txtExtracted texttext/plain52163https://repositorio.igp.gob.pe/bitstreams/8fdbda53-384e-4ae3-99f5-df29197940c3/downloadc3bfa52f1b27cd39daccbbbd8a6064d8MD53THUMBNAILAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdf.jpgAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdf.jpgIM Thumbnailimage/jpeg170722https://repositorio.igp.gob.pe/bitstreams/229cfd80-b3ef-40dd-8ad7-50aeb6d5a006/download3fc1902bdd2bd0cd68b0b3c4e8821349MD5420.500.12816/5452oai:repositorio.igp.gob.pe:20.500.12816/54522024-10-01 16:35:39.381https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.449188
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).