Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru
Descripción del Articulo
Multiple linear regression models were developed for 1–3-day lead forecasts of maximum and minimum temperature for two locations in the city of Lima, on the central coast of Peru (12°S), and contrasted with the operational forecasts issued by the National Meteorological and Hydrological Service—SENA...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Instituto Geofísico del Perú |
Repositorio: | IGP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.igp.gob.pe:20.500.12816/5452 |
Enlace del recurso: | http://hdl.handle.net/20.500.12816/5452 https://doi.org/10.1175/WAF-D-21-0094.1 |
Nivel de acceso: | acceso abierto |
Materia: | Synoptic climatology Synoptic-scale processes Regression analysis Forecast verification/skill Numerical weather prediction/forecasting https://purl.org/pe-repo/ocde/ford#1.05.09 |
id |
IGPR_2c168ceb94e498cf07df5fe928cde9f4 |
---|---|
oai_identifier_str |
oai:repositorio.igp.gob.pe:20.500.12816/5452 |
network_acronym_str |
IGPR |
network_name_str |
IGP-Institucional |
repository_id_str |
4701 |
dc.title.none.fl_str_mv |
Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru |
title |
Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru |
spellingShingle |
Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru Aliaga-Nestares, Vannia Synoptic climatology Synoptic-scale processes Regression analysis Forecast verification/skill Numerical weather prediction/forecasting https://purl.org/pe-repo/ocde/ford#1.05.09 |
title_short |
Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru |
title_full |
Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru |
title_fullStr |
Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru |
title_full_unstemmed |
Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru |
title_sort |
Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru |
author |
Aliaga-Nestares, Vannia |
author_facet |
Aliaga-Nestares, Vannia De La Cruz, Gustavo Takahashi, Ken |
author_role |
author |
author2 |
De La Cruz, Gustavo Takahashi, Ken |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Aliaga-Nestares, Vannia De La Cruz, Gustavo Takahashi, Ken |
dc.subject.none.fl_str_mv |
Synoptic climatology Synoptic-scale processes Regression analysis Forecast verification/skill Numerical weather prediction/forecasting |
topic |
Synoptic climatology Synoptic-scale processes Regression analysis Forecast verification/skill Numerical weather prediction/forecasting https://purl.org/pe-repo/ocde/ford#1.05.09 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.05.09 |
description |
Multiple linear regression models were developed for 1–3-day lead forecasts of maximum and minimum temperature for two locations in the city of Lima, on the central coast of Peru (12°S), and contrasted with the operational forecasts issued by the National Meteorological and Hydrological Service—SENAMHI and the output of a regional numerical atmospheric model. We developed empirical models, fitted to data from the 2000–13 period, and verified their skill for the 2014–19 period. Since El Niño produces a strong low-frequency signal, the models focus on the high-frequency weather and subseasonal variability (60-day cutoff). The empirical models outperformed the operational forecasts and the numerical model. For instance, the high-frequency annual correlation coefficient and root-mean-square error (RMSE) for the 1-day lead forecasts were 0.37°–0.53° and 0.74°–1.76°C for the empirical model, respectively, but from around −0.05° to 0.24° and 0.88°–4.21°C in the operational case. Only three predictors were considered for the models, including persistence and large-scale atmospheric indices. Contrary to our belief, the model skill was lowest for the austral winter (June–August), when the extratropical influence is largest, suggesting an enhanced role of local effects. Including local specific humidity as a predictor for minimum temperature at the inland location substantially increased the skill and reduced its seasonality. There were cases in which both the operational and empirical forecast had similar strong errors and we suggest mesoscale circulations, such as the low-level cyclonic vortex over the ocean, as the culprit. Incorporating such information could be valuable for improving the forecasts. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-08T20:06:47Z |
dc.date.available.none.fl_str_mv |
2023-09-08T20:06:47Z |
dc.date.issued.fl_str_mv |
2023-04-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.citation.none.fl_str_mv |
Aliaga-Nestares, V., De La Cruz, G., & Takahashi, K. (2023). Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru.==$Weather and Forecasting, 38$==(4), 555-570. https://doi.org/10.1175/WAF-D-21-0094.1 |
dc.identifier.govdoc.none.fl_str_mv |
index-oti2018 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12816/5452 |
dc.identifier.journal.none.fl_str_mv |
Weather and Forecasting |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1175/WAF-D-21-0094.1 |
identifier_str_mv |
Aliaga-Nestares, V., De La Cruz, G., & Takahashi, K. (2023). Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru.==$Weather and Forecasting, 38$==(4), 555-570. https://doi.org/10.1175/WAF-D-21-0094.1 index-oti2018 Weather and Forecasting |
url |
http://hdl.handle.net/20.500.12816/5452 https://doi.org/10.1175/WAF-D-21-0094.1 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:1520-0434 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.spatial.none.fl_str_mv |
Perú |
dc.publisher.none.fl_str_mv |
AMS |
publisher.none.fl_str_mv |
AMS |
dc.source.none.fl_str_mv |
reponame:IGP-Institucional instname:Instituto Geofísico del Perú instacron:IGP |
instname_str |
Instituto Geofísico del Perú |
instacron_str |
IGP |
institution |
IGP |
reponame_str |
IGP-Institucional |
collection |
IGP-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.igp.gob.pe/bitstreams/54105f85-216c-484c-b56d-e96ded48dd31/download https://repositorio.igp.gob.pe/bitstreams/5877cf14-510c-43fc-8003-b8b29617010f/download https://repositorio.igp.gob.pe/bitstreams/8fdbda53-384e-4ae3-99f5-df29197940c3/download https://repositorio.igp.gob.pe/bitstreams/229cfd80-b3ef-40dd-8ad7-50aeb6d5a006/download |
bitstream.checksum.fl_str_mv |
ad3bca8d8dd1a8e6f3498f57782e2807 8a4605be74aa9ea9d79846c1fba20a33 c3bfa52f1b27cd39daccbbbd8a6064d8 3fc1902bdd2bd0cd68b0b3c4e8821349 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Geofísico Nacional |
repository.mail.fl_str_mv |
biblio@igp.gob.pe |
_version_ |
1842618152965373952 |
spelling |
Aliaga-Nestares, VanniaDe La Cruz, GustavoTakahashi, KenPerú2023-09-08T20:06:47Z2023-09-08T20:06:47Z2023-04-06Aliaga-Nestares, V., De La Cruz, G., & Takahashi, K. (2023). Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peru.==$Weather and Forecasting, 38$==(4), 555-570. https://doi.org/10.1175/WAF-D-21-0094.1index-oti2018http://hdl.handle.net/20.500.12816/5452Weather and Forecastinghttps://doi.org/10.1175/WAF-D-21-0094.1Multiple linear regression models were developed for 1–3-day lead forecasts of maximum and minimum temperature for two locations in the city of Lima, on the central coast of Peru (12°S), and contrasted with the operational forecasts issued by the National Meteorological and Hydrological Service—SENAMHI and the output of a regional numerical atmospheric model. We developed empirical models, fitted to data from the 2000–13 period, and verified their skill for the 2014–19 period. Since El Niño produces a strong low-frequency signal, the models focus on the high-frequency weather and subseasonal variability (60-day cutoff). The empirical models outperformed the operational forecasts and the numerical model. For instance, the high-frequency annual correlation coefficient and root-mean-square error (RMSE) for the 1-day lead forecasts were 0.37°–0.53° and 0.74°–1.76°C for the empirical model, respectively, but from around −0.05° to 0.24° and 0.88°–4.21°C in the operational case. Only three predictors were considered for the models, including persistence and large-scale atmospheric indices. Contrary to our belief, the model skill was lowest for the austral winter (June–August), when the extratropical influence is largest, suggesting an enhanced role of local effects. Including local specific humidity as a predictor for minimum temperature at the inland location substantially increased the skill and reduced its seasonality. There were cases in which both the operational and empirical forecast had similar strong errors and we suggest mesoscale circulations, such as the low-level cyclonic vortex over the ocean, as the culprit. Incorporating such information could be valuable for improving the forecasts.Por paresapplication/pdfengAMSurn:issn:1520-0434info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Synoptic climatologySynoptic-scale processesRegression analysisForecast verification/skillNumerical weather prediction/forecastinghttps://purl.org/pe-repo/ocde/ford#1.05.09Comparison between the Operational and Statistical Daily Maximum and Minimum Temperature Forecasts on the Central Coast of Peruinfo:eu-repo/semantics/articlereponame:IGP-Institucionalinstname:Instituto Geofísico del Perúinstacron:IGPORIGINALAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdfAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdfapplication/pdf4364472https://repositorio.igp.gob.pe/bitstreams/54105f85-216c-484c-b56d-e96ded48dd31/downloadad3bca8d8dd1a8e6f3498f57782e2807MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.igp.gob.pe/bitstreams/5877cf14-510c-43fc-8003-b8b29617010f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdf.txtAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdf.txtExtracted texttext/plain52163https://repositorio.igp.gob.pe/bitstreams/8fdbda53-384e-4ae3-99f5-df29197940c3/downloadc3bfa52f1b27cd39daccbbbd8a6064d8MD53THUMBNAILAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdf.jpgAliaga-Nestares_et_al_2023_Weather_and_Forecasting.pdf.jpgIM Thumbnailimage/jpeg170722https://repositorio.igp.gob.pe/bitstreams/229cfd80-b3ef-40dd-8ad7-50aeb6d5a006/download3fc1902bdd2bd0cd68b0b3c4e8821349MD5420.500.12816/5452oai:repositorio.igp.gob.pe:20.500.12816/54522024-10-01 16:35:39.381https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://repositorio.igp.gob.peRepositorio Geofísico Nacionalbiblio@igp.gob.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.449188 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).