Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation

Descripción del Articulo

Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series fo...

Descripción completa

Detalles Bibliográficos
Autores: Ramos M.M.P., Del Alamo C.L., Zapana R.A.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2731
Enlace del recurso:https://hdl.handle.net/20.500.12390/2731
https://doi.org/10.1007/978-3-030-29888-3_44
Nivel de acceso:acceso abierto
Materia:Weather forecast
Correlation
Deep Learning
Feature vector
Forecasting of time series
Non-linear forecast models
http://purl.org/pe-repo/ocde/ford#1.05.10
Descripción
Sumario:Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series forecasting methods is to consider the set of values over time that facilitates the prediction of future value. In this sense, we propose a new feature vector based on the correlation and autocorrelation functions. These measures reflect how the observations of a time series are related to each other. Then, univariate forecasting is performed using Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep neural network. Finally, we compared the new model with linear and non-linear models. Reported results exhibit that MLP and LSTM models using the proposed feature vector, they show promising results for univariate forecasting. We tested our method on a real-world dataset from the Fisher weather station (Harvard Forest). © 2019, Springer Nature Switzerland AG.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).