Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation

Descripción del Articulo

Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series fo...

Descripción completa

Detalles Bibliográficos
Autores: Ramos M.M.P., Del Alamo C.L., Zapana R.A.
Formato: artículo
Fecha de Publicación:2019
Institución:Consejo Nacional de Ciencia Tecnología e Innovación
Repositorio:CONCYTEC-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.concytec.gob.pe:20.500.12390/2731
Enlace del recurso:https://hdl.handle.net/20.500.12390/2731
https://doi.org/10.1007/978-3-030-29888-3_44
Nivel de acceso:acceso abierto
Materia:Weather forecast
Correlation
Deep Learning
Feature vector
Forecasting of time series
Non-linear forecast models
http://purl.org/pe-repo/ocde/ford#1.05.10
id CONC_6f4967b0d20c65a96f3fae00e8155924
oai_identifier_str oai:repositorio.concytec.gob.pe:20.500.12390/2731
network_acronym_str CONC
network_name_str CONCYTEC-Institucional
repository_id_str 4689
dc.title.none.fl_str_mv Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation
title Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation
spellingShingle Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation
Ramos M.M.P.
Weather forecast
Correlation
Deep Learning
Feature vector
Forecasting of time series
Non-linear forecast models
http://purl.org/pe-repo/ocde/ford#1.05.10
title_short Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation
title_full Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation
title_fullStr Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation
title_full_unstemmed Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation
title_sort Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation
author Ramos M.M.P.
author_facet Ramos M.M.P.
Del Alamo C.L.
Zapana R.A.
author_role author
author2 Del Alamo C.L.
Zapana R.A.
author2_role author
author
dc.contributor.author.fl_str_mv Ramos M.M.P.
Del Alamo C.L.
Zapana R.A.
dc.subject.none.fl_str_mv Weather forecast
topic Weather forecast
Correlation
Deep Learning
Feature vector
Forecasting of time series
Non-linear forecast models
http://purl.org/pe-repo/ocde/ford#1.05.10
dc.subject.es_PE.fl_str_mv Correlation
Deep Learning
Feature vector
Forecasting of time series
Non-linear forecast models
dc.subject.ocde.none.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.05.10
description Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series forecasting methods is to consider the set of values over time that facilitates the prediction of future value. In this sense, we propose a new feature vector based on the correlation and autocorrelation functions. These measures reflect how the observations of a time series are related to each other. Then, univariate forecasting is performed using Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep neural network. Finally, we compared the new model with linear and non-linear models. Reported results exhibit that MLP and LSTM models using the proposed feature vector, they show promising results for univariate forecasting. We tested our method on a real-world dataset from the Fisher weather station (Harvard Forest). © 2019, Springer Nature Switzerland AG.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.available.none.fl_str_mv 2024-05-30T23:13:38Z
dc.date.issued.fl_str_mv 2019
dc.type.none.fl_str_mv info:eu-repo/semantics/article
format article
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12390/2731
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/978-3-030-29888-3_44
dc.identifier.scopus.none.fl_str_mv 2-s2.0-85072859647
url https://hdl.handle.net/20.500.12390/2731
https://doi.org/10.1007/978-3-030-29888-3_44
identifier_str_mv 2-s2.0-85072859647
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:CONCYTEC-Institucional
instname:Consejo Nacional de Ciencia Tecnología e Innovación
instacron:CONCYTEC
instname_str Consejo Nacional de Ciencia Tecnología e Innovación
instacron_str CONCYTEC
institution CONCYTEC
reponame_str CONCYTEC-Institucional
collection CONCYTEC-Institucional
repository.name.fl_str_mv Repositorio Institucional CONCYTEC
repository.mail.fl_str_mv repositorio@concytec.gob.pe
_version_ 1839175485176676352
spelling Publicationrp07293600rp07292600rp07291600Ramos M.M.P.Del Alamo C.L.Zapana R.A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2731https://doi.org/10.1007/978-3-030-29888-3_442-s2.0-85072859647Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series forecasting methods is to consider the set of values over time that facilitates the prediction of future value. In this sense, we propose a new feature vector based on the correlation and autocorrelation functions. These measures reflect how the observations of a time series are related to each other. Then, univariate forecasting is performed using Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep neural network. Finally, we compared the new model with linear and non-linear models. Reported results exhibit that MLP and LSTM models using the proposed feature vector, they show promising results for univariate forecasting. We tested our method on a real-world dataset from the Fisher weather station (Harvard Forest). © 2019, Springer Nature Switzerland AG.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer VerlagLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccessWeather forecastCorrelation-1Deep Learning-1Feature vector-1Forecasting of time series-1Non-linear forecast models-1http://purl.org/pe-repo/ocde/ford#1.05.10-1Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlationinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2731oai:repositorio.concytec.gob.pe:20.500.12390/27312024-05-30 16:10:53.541http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2f922b4d-835b-4fcd-b93b-c2c393668244"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation</Title> <PublishedIn> <Publication> <Title>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-29888-3_44</DOI> <SCP-Number>2-s2.0-85072859647</SCP-Number> <Authors> <Author> <DisplayName>Ramos M.M.P.</DisplayName> <Person id="rp07293" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Del Alamo C.L.</DisplayName> <Person id="rp07292" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Zapana R.A.</DisplayName> <Person id="rp07291" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Verlag</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Weather forecast</Keyword> <Keyword>Correlation</Keyword> <Keyword>Deep Learning</Keyword> <Keyword>Feature vector</Keyword> <Keyword>Forecasting of time series</Keyword> <Keyword>Non-linear forecast models</Keyword> <Abstract>Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series forecasting methods is to consider the set of values over time that facilitates the prediction of future value. In this sense, we propose a new feature vector based on the correlation and autocorrelation functions. These measures reflect how the observations of a time series are related to each other. Then, univariate forecasting is performed using Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep neural network. Finally, we compared the new model with linear and non-linear models. Reported results exhibit that MLP and LSTM models using the proposed feature vector, they show promising results for univariate forecasting. We tested our method on a real-world dataset from the Fisher weather station (Harvard Forest). © 2019, Springer Nature Switzerland AG.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1
score 13.439101
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).