Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation
Descripción del Articulo
Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series fo...
Autores: | , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2019 |
Institución: | Consejo Nacional de Ciencia Tecnología e Innovación |
Repositorio: | CONCYTEC-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.concytec.gob.pe:20.500.12390/2731 |
Enlace del recurso: | https://hdl.handle.net/20.500.12390/2731 https://doi.org/10.1007/978-3-030-29888-3_44 |
Nivel de acceso: | acceso abierto |
Materia: | Weather forecast Correlation Deep Learning Feature vector Forecasting of time series Non-linear forecast models http://purl.org/pe-repo/ocde/ford#1.05.10 |
id |
CONC_6f4967b0d20c65a96f3fae00e8155924 |
---|---|
oai_identifier_str |
oai:repositorio.concytec.gob.pe:20.500.12390/2731 |
network_acronym_str |
CONC |
network_name_str |
CONCYTEC-Institucional |
repository_id_str |
4689 |
dc.title.none.fl_str_mv |
Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation |
title |
Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation |
spellingShingle |
Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation Ramos M.M.P. Weather forecast Correlation Deep Learning Feature vector Forecasting of time series Non-linear forecast models http://purl.org/pe-repo/ocde/ford#1.05.10 |
title_short |
Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation |
title_full |
Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation |
title_fullStr |
Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation |
title_full_unstemmed |
Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation |
title_sort |
Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation |
author |
Ramos M.M.P. |
author_facet |
Ramos M.M.P. Del Alamo C.L. Zapana R.A. |
author_role |
author |
author2 |
Del Alamo C.L. Zapana R.A. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Ramos M.M.P. Del Alamo C.L. Zapana R.A. |
dc.subject.none.fl_str_mv |
Weather forecast |
topic |
Weather forecast Correlation Deep Learning Feature vector Forecasting of time series Non-linear forecast models http://purl.org/pe-repo/ocde/ford#1.05.10 |
dc.subject.es_PE.fl_str_mv |
Correlation Deep Learning Feature vector Forecasting of time series Non-linear forecast models |
dc.subject.ocde.none.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.05.10 |
description |
Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series forecasting methods is to consider the set of values over time that facilitates the prediction of future value. In this sense, we propose a new feature vector based on the correlation and autocorrelation functions. These measures reflect how the observations of a time series are related to each other. Then, univariate forecasting is performed using Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep neural network. Finally, we compared the new model with linear and non-linear models. Reported results exhibit that MLP and LSTM models using the proposed feature vector, they show promising results for univariate forecasting. We tested our method on a real-world dataset from the Fisher weather station (Harvard Forest). © 2019, Springer Nature Switzerland AG. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.available.none.fl_str_mv |
2024-05-30T23:13:38Z |
dc.date.issued.fl_str_mv |
2019 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12390/2731 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1007/978-3-030-29888-3_44 |
dc.identifier.scopus.none.fl_str_mv |
2-s2.0-85072859647 |
url |
https://hdl.handle.net/20.500.12390/2731 https://doi.org/10.1007/978-3-030-29888-3_44 |
identifier_str_mv |
2-s2.0-85072859647 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:CONCYTEC-Institucional instname:Consejo Nacional de Ciencia Tecnología e Innovación instacron:CONCYTEC |
instname_str |
Consejo Nacional de Ciencia Tecnología e Innovación |
instacron_str |
CONCYTEC |
institution |
CONCYTEC |
reponame_str |
CONCYTEC-Institucional |
collection |
CONCYTEC-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional CONCYTEC |
repository.mail.fl_str_mv |
repositorio@concytec.gob.pe |
_version_ |
1839175485176676352 |
spelling |
Publicationrp07293600rp07292600rp07291600Ramos M.M.P.Del Alamo C.L.Zapana R.A.2024-05-30T23:13:38Z2024-05-30T23:13:38Z2019https://hdl.handle.net/20.500.12390/2731https://doi.org/10.1007/978-3-030-29888-3_442-s2.0-85072859647Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series forecasting methods is to consider the set of values over time that facilitates the prediction of future value. In this sense, we propose a new feature vector based on the correlation and autocorrelation functions. These measures reflect how the observations of a time series are related to each other. Then, univariate forecasting is performed using Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep neural network. Finally, we compared the new model with linear and non-linear models. Reported results exhibit that MLP and LSTM models using the proposed feature vector, they show promising results for univariate forecasting. We tested our method on a real-world dataset from the Fisher weather station (Harvard Forest). © 2019, Springer Nature Switzerland AG.Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - ConcytecengSpringer VerlagLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccessWeather forecastCorrelation-1Deep Learning-1Feature vector-1Forecasting of time series-1Non-linear forecast models-1http://purl.org/pe-repo/ocde/ford#1.05.10-1Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlationinfo:eu-repo/semantics/articlereponame:CONCYTEC-Institucionalinstname:Consejo Nacional de Ciencia Tecnología e Innovacióninstacron:CONCYTEC20.500.12390/2731oai:repositorio.concytec.gob.pe:20.500.12390/27312024-05-30 16:10:53.541http://purl.org/coar/access_right/c_14cbinfo:eu-repo/semantics/closedAccessmetadata only accesshttps://repositorio.concytec.gob.peRepositorio Institucional CONCYTECrepositorio@concytec.gob.pe#PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE##PLACEHOLDER_PARENT_METADATA_VALUE#<Publication xmlns="https://www.openaire.eu/cerif-profile/1.1/" id="2f922b4d-835b-4fcd-b93b-c2c393668244"> <Type xmlns="https://www.openaire.eu/cerif-profile/vocab/COAR_Publication_Types">http://purl.org/coar/resource_type/c_1843</Type> <Language>eng</Language> <Title>Forecasting of Meteorological Weather Time Series Through a Feature Vector Based on Correlation</Title> <PublishedIn> <Publication> <Title>Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)</Title> </Publication> </PublishedIn> <PublicationDate>2019</PublicationDate> <DOI>https://doi.org/10.1007/978-3-030-29888-3_44</DOI> <SCP-Number>2-s2.0-85072859647</SCP-Number> <Authors> <Author> <DisplayName>Ramos M.M.P.</DisplayName> <Person id="rp07293" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Del Alamo C.L.</DisplayName> <Person id="rp07292" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> <Author> <DisplayName>Zapana R.A.</DisplayName> <Person id="rp07291" /> <Affiliation> <OrgUnit> </OrgUnit> </Affiliation> </Author> </Authors> <Editors> </Editors> <Publishers> <Publisher> <DisplayName>Springer Verlag</DisplayName> <OrgUnit /> </Publisher> </Publishers> <Keyword>Weather forecast</Keyword> <Keyword>Correlation</Keyword> <Keyword>Deep Learning</Keyword> <Keyword>Feature vector</Keyword> <Keyword>Forecasting of time series</Keyword> <Keyword>Non-linear forecast models</Keyword> <Abstract>Nowadays, the impacts of climate change are harming many countries around the world. For this reason, the scientific community is interested in improving methods to forecast weather events, so it is possible to avoid people from being injured. One important thing in the development of time series forecasting methods is to consider the set of values over time that facilitates the prediction of future value. In this sense, we propose a new feature vector based on the correlation and autocorrelation functions. These measures reflect how the observations of a time series are related to each other. Then, univariate forecasting is performed using Multilayer Perceptron (MLP) and Long Short-Term Memory (LSTM) deep neural network. Finally, we compared the new model with linear and non-linear models. Reported results exhibit that MLP and LSTM models using the proposed feature vector, they show promising results for univariate forecasting. We tested our method on a real-world dataset from the Fisher weather station (Harvard Forest). © 2019, Springer Nature Switzerland AG.</Abstract> <Access xmlns="http://purl.org/coar/access_right" > </Access> </Publication> -1 |
score |
13.439101 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).