Dynamics of the carbonate system across the Peruvian Oxygen Minimum Zone

Descripción del Articulo

The oxygen minimum zone (OMZ) of Peru is recognized as a source of CO₂ to the atmosphere due to upwelling that brings water with high concentrations of dissolved inorganic carbon (DIC) to the surface. However, the influence of OMZ dynamics on the carbonate system remains poorly understood given a la...

Descripción completa

Detalles Bibliográficos
Autores: Hernandez-Ayon, Jose M., Paulmier, Aurélien, Garcon, Veronique, Sudre, Joel, Montes Torres, Ivonne, Chapa-Balcorta, Cecilia, Durante, Giovanni, Dewitte, Boris, Maes, Cristophe, Bretagnon, Marine
Formato: artículo
Fecha de Publicación:2019
Institución:Instituto Geofísico del Perú
Repositorio:IGP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.igp.gob.pe:20.500.12816/4767
Enlace del recurso:http://hdl.handle.net/20.500.12816/4767
https://doi.org/10.3389/fmars.2019.00617
Nivel de acceso:acceso abierto
Materia:OMZ
DIC
pH
Omega aragonite
Upwelling peruvian system
http://purl.org/pe-repo/ocde/ford#1.05.00
http://purl.org/pe-repo/ocde/ford#1.05.09
http://purl.org/pe-repo/ocde/ford#1.05.11
Descripción
Sumario:The oxygen minimum zone (OMZ) of Peru is recognized as a source of CO₂ to the atmosphere due to upwelling that brings water with high concentrations of dissolved inorganic carbon (DIC) to the surface. However, the influence of OMZ dynamics on the carbonate system remains poorly understood given a lack of direct observations. This study examines the influence of a coastal Eastern South Pacific OMZ on carbonate system dynamics based on a multidisciplinary cruise that took place in 2014. During the cruise, onboard DIC and pH measurements were used to estimate pCO₂ and to calculate the calcium carbonate saturation state ( Ω aragonite and calcite). South of Chimbote (9ºS), water stratification decreased and both the oxycline and carbocline moved from 150m depth to 20–50m below the surface. The aragonite saturation depth was observed to be close to 50m. However, values <1.2 were detected close to 20m along with low pH (minimum of 7.5), high pCO2 (maximum 1,250μatm), and high DIC concentrations (maximum 2,300 μmol kg⁻¹). These chemical characteristics are shown to be associated with Equatorial Subsurface Water (ESSW). Large spatial variability in surface values was also found. Part of this variability can be attributed to the influence of mesoscale eddies, which can modify the distribution of biogeochemical variables, such as the aragonite saturation horizon, in response to shallower (cyclonic eddies) or deeper (anticyclonic eddies) thermoclines. The analysis of a 21-year (1993–2014) data set of mean sea surface level anomalies (SSHa) derived from altimetry data indicated that a large variance associated with interannual timescales was present near the coast. However, 2014 was characterized by weak Kelvin activity, and physical forcing was more associated with eddy activity. Mesoscale activity modulates the position of the upper boundary of ESSW, which is associated with high DIC and influences the carbocline and aragonite saturation depths. Weighing the relative importance of each individual signal results in a better understanding of the biogeochemical processes present in the area.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).