A recent review on optimisation methods applied to credit scoring models

Descripción del Articulo

Purpose: This paper aims to present a literature review of the most recent optimisation methods applied to Credit Scoring Models (CSMs). Design/methodology/approach: The research methodology employed technical procedures based on bibliographic and exploratory analyses. A traditional investigation wa...

Descripción completa

Detalles Bibliográficos
Autores: Kamimura, Elias Shohei, Pinto, Anderson Rogerio Faia, Nagano, Marcelo Seido
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/3684
Enlace del recurso:https://hdl.handle.net/20.500.12640/3684
https://doi.org/10.1108/JEFAS-09-2021-0193
Nivel de acceso:acceso abierto
Materia:Credit scoring
Literature review
Risk management
Optimization methods
Calificación crediticia
Revisión de literatura
Gestión de riesgos
Métodos de optimización
https://purl.org/pe-repo/ocde/ford#5.02.04
id ESAN_cddf0496438f70e6efb8e9c8b49e264d
oai_identifier_str oai:repositorio.esan.edu.pe:20.500.12640/3684
network_acronym_str ESAN
network_name_str ESAN-Institucional
repository_id_str 4835
dc.title.en_EN.fl_str_mv A recent review on optimisation methods applied to credit scoring models
title A recent review on optimisation methods applied to credit scoring models
spellingShingle A recent review on optimisation methods applied to credit scoring models
Kamimura, Elias Shohei
Credit scoring
Literature review
Risk management
Optimization methods
Calificación crediticia
Revisión de literatura
Gestión de riesgos
Métodos de optimización
https://purl.org/pe-repo/ocde/ford#5.02.04
title_short A recent review on optimisation methods applied to credit scoring models
title_full A recent review on optimisation methods applied to credit scoring models
title_fullStr A recent review on optimisation methods applied to credit scoring models
title_full_unstemmed A recent review on optimisation methods applied to credit scoring models
title_sort A recent review on optimisation methods applied to credit scoring models
author Kamimura, Elias Shohei
author_facet Kamimura, Elias Shohei
Pinto, Anderson Rogerio Faia
Nagano, Marcelo Seido
author_role author
author2 Pinto, Anderson Rogerio Faia
Nagano, Marcelo Seido
author2_role author
author
dc.contributor.author.fl_str_mv Kamimura, Elias Shohei
Pinto, Anderson Rogerio Faia
Nagano, Marcelo Seido
dc.subject.en_EN.fl_str_mv Credit scoring
Literature review
Risk management
Optimization methods
topic Credit scoring
Literature review
Risk management
Optimization methods
Calificación crediticia
Revisión de literatura
Gestión de riesgos
Métodos de optimización
https://purl.org/pe-repo/ocde/ford#5.02.04
dc.subject.es_ES.fl_str_mv Calificación crediticia
Revisión de literatura
Gestión de riesgos
Métodos de optimización
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.04
description Purpose: This paper aims to present a literature review of the most recent optimisation methods applied to Credit Scoring Models (CSMs). Design/methodology/approach: The research methodology employed technical procedures based on bibliographic and exploratory analyses. A traditional investigation was carried out using the Scopus, ScienceDirect and Web of Science databases. The papers selection and classification took place in three steps considering only studies in English language and published in electronic journals (from 2008 to 2022). The investigation led up to the selection of 46 publications (10 presenting literature reviews and 36 proposing CSMs). Findings: The findings showed that CSMs are usually formulated using Financial Analysis, Machine Learning, Statistical Techniques, Operational Research and Data Mining Algorithms. The main databases used by the researchers were banks and the University of California, Irvine. The analyses identified 48 methods used by CSMs, the main ones being: Logistic Regression (13%), Naive Bayes (10%) and Artificial Neural Networks (7%). The authors conclude that advances in credit score studies will require new hybrid approaches capable of integrating Big Data and Deep Learning algorithms into CSMs. These algorithms should have practical issues considered consider practical issues for improving the level of adaptation and performance demanded for the CSMs. Practical implications: The results of this study might provide considerable practical implications for the application of CSMs. As it was aimed to demonstrate the application of optimisation methods, it is highly considerable that legal and ethical issues should be better adapted to CSMs. It is also suggested improvement of studies focused on micro and small companies for sales in instalment plans and commercial credit through the improvement or new CSMs. Originality/value: The economic reality surrounding credit granting has made risk management a complex decision-making issue increasingly supported by CSMs. Therefore, this paper satisfies an important gap in the literature to present an analysis of recent advances in optimisation methods applied to CSMs. The main contribution of this paper consists of presenting the evolution of the state of the art and future trends in studies aimed at proposing better CSMs.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2024-02-01T22:21:16Z
2024-03-18T15:49:38Z
dc.date.available.none.fl_str_mv 2024-02-01T22:21:16Z
2024-03-18T15:49:38Z
dc.date.issued.fl_str_mv 2023-12-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.other.none.fl_str_mv Artículo
format article
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Kamimura, E. S., Pinto, A. R. F., & Nagano, M. S. (2023). A recent review on optimisation methods applied to credit scoring models. Journal of Economics, Finance and Administrative Science, 28(56), 352–371. https://doi.org/10.1108/JEFAS-09-2021-0193
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12640/3684
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1108/JEFAS-09-2021-0193
identifier_str_mv Kamimura, E. S., Pinto, A. R. F., & Nagano, M. S. (2023). A recent review on optimisation methods applied to credit scoring models. Journal of Economics, Finance and Administrative Science, 28(56), 352–371. https://doi.org/10.1108/JEFAS-09-2021-0193
url https://hdl.handle.net/20.500.12640/3684
https://doi.org/10.1108/JEFAS-09-2021-0193
dc.language.none.fl_str_mv Inglés
dc.language.iso.none.fl_str_mv eng
language_invalid_str_mv Inglés
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2218-0648
dc.relation.uri.none.fl_str_mv https://revistas.esan.edu.pe/index.php/jefas/article/view/691/558
dc.rights.en.fl_str_mv Attribution 4.0 International
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by/4.0/
rights_invalid_str_mv Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.es_ES.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.publisher.country.none.fl_str_mv PE
publisher.none.fl_str_mv Universidad ESAN. ESAN Ediciones
dc.source.none.fl_str_mv reponame:ESAN-Institucional
instname:Universidad ESAN
instacron:ESAN
instname_str Universidad ESAN
instacron_str ESAN
institution ESAN
reponame_str ESAN-Institucional
collection ESAN-Institucional
bitstream.url.fl_str_mv https://repositorio.esan.edu.pe/bitstreams/cb393ad5-41c3-4331-946b-ba1533e91c0e/download
https://repositorio.esan.edu.pe/bitstreams/1f124f04-1599-4d20-b274-388be615a407/download
https://repositorio.esan.edu.pe/bitstreams/601c6025-72b5-4ad8-8887-1e100dcf26ed/download
https://repositorio.esan.edu.pe/bitstreams/855e82e3-e54d-440a-9b8a-d584d488356c/download
bitstream.checksum.fl_str_mv c1cd5b2acfcb26db7971a3681d2bc45f
7152fa649ae7b71711a29b7bb0cabf44
12946fcfca02fac8936518cbe4706e36
af0e015873306c2dd2624087c6c83f95
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional ESAN
repository.mail.fl_str_mv repositorio@esan.edu.pe
_version_ 1843261832109752320
spelling Kamimura, Elias ShoheiPinto, Anderson Rogerio FaiaNagano, Marcelo Seido2024-02-01T22:21:16Z2024-03-18T15:49:38Z2024-02-01T22:21:16Z2024-03-18T15:49:38Z2023-12-11Kamimura, E. S., Pinto, A. R. F., & Nagano, M. S. (2023). A recent review on optimisation methods applied to credit scoring models. Journal of Economics, Finance and Administrative Science, 28(56), 352–371. https://doi.org/10.1108/JEFAS-09-2021-0193https://hdl.handle.net/20.500.12640/3684https://doi.org/10.1108/JEFAS-09-2021-0193Purpose: This paper aims to present a literature review of the most recent optimisation methods applied to Credit Scoring Models (CSMs). Design/methodology/approach: The research methodology employed technical procedures based on bibliographic and exploratory analyses. A traditional investigation was carried out using the Scopus, ScienceDirect and Web of Science databases. The papers selection and classification took place in three steps considering only studies in English language and published in electronic journals (from 2008 to 2022). The investigation led up to the selection of 46 publications (10 presenting literature reviews and 36 proposing CSMs). Findings: The findings showed that CSMs are usually formulated using Financial Analysis, Machine Learning, Statistical Techniques, Operational Research and Data Mining Algorithms. The main databases used by the researchers were banks and the University of California, Irvine. The analyses identified 48 methods used by CSMs, the main ones being: Logistic Regression (13%), Naive Bayes (10%) and Artificial Neural Networks (7%). The authors conclude that advances in credit score studies will require new hybrid approaches capable of integrating Big Data and Deep Learning algorithms into CSMs. These algorithms should have practical issues considered consider practical issues for improving the level of adaptation and performance demanded for the CSMs. Practical implications: The results of this study might provide considerable practical implications for the application of CSMs. As it was aimed to demonstrate the application of optimisation methods, it is highly considerable that legal and ethical issues should be better adapted to CSMs. It is also suggested improvement of studies focused on micro and small companies for sales in instalment plans and commercial credit through the improvement or new CSMs. Originality/value: The economic reality surrounding credit granting has made risk management a complex decision-making issue increasingly supported by CSMs. Therefore, this paper satisfies an important gap in the literature to present an analysis of recent advances in optimisation methods applied to CSMs. The main contribution of this paper consists of presenting the evolution of the state of the art and future trends in studies aimed at proposing better CSMs.application/pdfInglésengUniversidad ESAN. ESAN EdicionesPEurn:issn:2218-0648https://revistas.esan.edu.pe/index.php/jefas/article/view/691/558Attribution 4.0 Internationalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/Credit scoringLiterature reviewRisk managementOptimization methodsCalificación crediticiaRevisión de literaturaGestión de riesgosMétodos de optimizaciónhttps://purl.org/pe-repo/ocde/ford#5.02.04A recent review on optimisation methods applied to credit scoring modelsinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtículoreponame:ESAN-Institucionalinstname:Universidad ESANinstacron:ESANJournal of Economics, Finance and Administrative Science3715635228Acceso abiertoTHUMBNAIL56.jpgimage/jpeg145357https://repositorio.esan.edu.pe/bitstreams/cb393ad5-41c3-4331-946b-ba1533e91c0e/downloadc1cd5b2acfcb26db7971a3681d2bc45fMD51falseAnonymousREADJEFAS-56-2023-352-371.pdf.jpgJEFAS-56-2023-352-371.pdf.jpgGenerated Thumbnailimage/jpeg6120https://repositorio.esan.edu.pe/bitstreams/1f124f04-1599-4d20-b274-388be615a407/download7152fa649ae7b71711a29b7bb0cabf44MD54falseAnonymousREADORIGINALJEFAS-56-2023-352-371.pdfTexto completoapplication/pdf1244988https://repositorio.esan.edu.pe/bitstreams/601c6025-72b5-4ad8-8887-1e100dcf26ed/download12946fcfca02fac8936518cbe4706e36MD52trueAnonymousREADTEXTJEFAS-56-2023-352-371.pdf.txtJEFAS-56-2023-352-371.pdf.txtExtracted texttext/plain69257https://repositorio.esan.edu.pe/bitstreams/855e82e3-e54d-440a-9b8a-d584d488356c/downloadaf0e015873306c2dd2624087c6c83f95MD53falseAnonymousREAD20.500.12640/3684oai:repositorio.esan.edu.pe:20.500.12640/36842025-07-09 09:29:49.895https://creativecommons.org/licenses/by/4.0/Attribution 4.0 Internationalopen.accesshttps://repositorio.esan.edu.peRepositorio Institucional ESANrepositorio@esan.edu.pe
score 13.905835
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).