Implementación de un modelo de Machine Learning para la predicción de la demanda de muebles de sala en la empresa Mallhogar.com

Descripción del Articulo

La empresa Mallhogar.com se dedica a la venta online de muebles. Actualmente, busca predecir la demanda de muebles de sala que ofrece en el mercado peruano. En este contexto, el objetivo de esta investigación fue desarrollar un modelo de predicción de la demanda que permita optimizar su producción,...

Descripción completa

Detalles Bibliográficos
Autores: Chipana De La Cruz, David Ismael, Chugnas Sebastian, Analy Sandy, Chupillón Bautista, Yarelis Nicole, Guzmán Ramos, Pedro Jesús, Huancaya Rivas, Hasdaly Anjely
Formato: tesis de grado
Fecha de Publicación:2023
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/3705
Enlace del recurso:https://hdl.handle.net/20.500.12640/3705
Nivel de acceso:acceso embargado
Materia:Logística
Aprendizaje automático
Demanda
Predicciones
Muebles
Empresas comerciales
https://purl.org/pe-repo/ocde/ford#2.11.04
https://purl.org/pe-repo/ocde/ford#5.02.04
Descripción
Sumario:La empresa Mallhogar.com se dedica a la venta online de muebles. Actualmente, busca predecir la demanda de muebles de sala que ofrece en el mercado peruano. En este contexto, el objetivo de esta investigación fue desarrollar un modelo de predicción de la demanda que permita optimizar su producción, gestionar sus inventarios y agilizar la distribución de productos terminados. Para lograrlo se recopiló información de datos históricos de venta del periodo 2020-2023, se aplicó modelos de Machine Learning, en cinco tipos de muebles de sala. Los modelos de predicción que se emplearon fueron Regresión Lineal, CatBoost, XGBoost y LightGBM. Los resultados fueron evaluados comparando métricas como el Factor de determinación, Error Cuadrático Medio y Raíz del Error Cuadrático Medio, se analizó cómo el modelo se ajusta a los datos de entrenamiento con sus posibles limitaciones. Los experimentos realizados mostraron que los modelos LightGBM y XGBoost tuvieron mejores resultados con una ligera superioridad en comparación a los otros modelos, lo cual se vio reflejado en todos los modelos de muebles analizados, al final se obtuvo la predicción de muebles a vender para los meses de diciembre del 2023, enero del 2024 y febrero del 2024.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).