Modelos de clasificación de clientes bancarizados de los niveles socioeconómicos C y D

Descripción del Articulo

El objetivo de la presente investigación es desarrollar tres modelos de clasificación de deudores a fin de determinar la probabilidad de incumplimiento asociada a los créditos “retail” solicitados a instituciones microfinancieras. Los modelos utilizados son: una función logística binaria, árbol de d...

Descripción completa

Detalles Bibliográficos
Autor: Tineo Nieves, Anthony Kevin
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Universidad ESAN
Repositorio:ESAN-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.esan.edu.pe:20.500.12640/1566
Enlace del recurso:https://hdl.handle.net/20.500.12640/1566
Nivel de acceso:acceso abierto
Materia:Gestión financiera
Nivel de vida
Indicadores económicos
Indicadores sociales
Clasificación
Clientes
Instituciones financieras
Microfinanzas
https://purl.org/pe-repo/ocde/ford#5.02.04
Descripción
Sumario:El objetivo de la presente investigación es desarrollar tres modelos de clasificación de deudores a fin de determinar la probabilidad de incumplimiento asociada a los créditos “retail” solicitados a instituciones microfinancieras. Los modelos utilizados son: una función logística binaria, árbol de decisión y redes neuronales artificiales. Asimismo, la presente investigación busca determinar las variables relevantes para determinar probabilidad de incumplimiento, identificar el nivel de ajuste y discrimancia en cada modelo a través del análisis de la Curva de ROC, estadístico Kolmogorov-Smirnov y coeficiente de GINI. Por último, se busca conocer las principales fortalezas y debilidades de cada modelo. Los resultados muestran que el modelo de redes neuronales artificiales presenta mejor nivel de ajuste y discrimancia en comparación con los otros dos modelos. Adicionalmente, se ha encontrado que las variables más relevantes provienen del historial crediticio del cliente. Finalmente, los modelos de función logística binaria y árbol de decisión también muestran un buen nivel de ajuste y discrimancia, por lo cual soportar una decisión de clasificación de clientes considerando la complementariedad de dichos modelos resulta optima, ya que dichos modelos consideran adicionalmente otras variables provenientes del historial crediticio y otras de tipo demográficas relevantes para la toma de decisiones.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).